
Backlog-Aware Crossbar Schedulers: A New Algorithm and its Efficient

Hardware Implementation

Nikos Chrysos and Giorgos Dimitrakopoulos

Inst. of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH) - member of HiPEAC
∗

FORTH-ICS, Vassilika Vouton, P.O. Box 1385, Heraklion, Crete, GR-711-10 Greece

Abstract

Crossbars switches with input queues are the common build-

ing blocks of high-speed networks, while their speed and per-

formance critically depend on their scheduler. In this paper

we combine ideas from randomized backlog-aware sched-

ulers, and their round-robin (RR) counterparts, to propose a

practical, deterministic crossbar scheduler, that: (i) achieves

almost full throughput under the many adverse traffic pat-

terns tested, using just 1 Mbyte buffer memory per input, (ii)

provides deterministic delay service guarantees, (iii) yields

low delays under both uniform and non-uniform load, and

(iv) achieves these performances with a single iteration of an

iSLIP-like algorithm. With simple extensions, the proposed

crossbar scheduler is shown to distribute the bandwidth of

congested links in a fair RR or WRR manner. In order to

prove the efficiency of the new scheduling algorithm, we im-

plemented in hardware a 32×32 scheduler, using a novel

design for programmable-priority RR arbiters, that is signif-

icantly more area-speed efficient than present state-of-the-

art. The scheduler’s ASIC occupies roughly 3 mm2, when

implemented at 130nm, and gives a new crossbar match ev-

ery 3.2 ns as needed for above hundred Gb/s line rates, and

short packet lengths.

1 Introduction

Crossbar switches are the common building blocks for In-

ternet routers, data-center and HPC interconnects and on-

chip networks. The core switching fabric often has no

buffers, saving in this way memory area and buffer speed.

Arriving packets issue requests to a central scheduler, and

get switched upon scheduler grants; meanwhile, packets wait

at input packet buffers, in front of the crossbar. In order to

isolate traffic flows1, and provide the basis for proper con-

gestion management, these input buffers must be organized

in per-flow queues, forming what is widely known as virtual-

output-queuing (VOQ) crossbars, as shown in Fig. 1.

∗This work was supported by the European Commission in the context

of the SARC integrated project 27648 (FP6), and the HIPEAC network of

excellence (project 004408 and 217068) under the Interconnects research

cluster.
1Flows are identified by distinct input-port/output-port pairs.

switching fabric

outp.1

outp.N

inp.1

inp.N

V
O

Q
s

outp id

outp id

crossbar

crossbar
scheduler

requests

gr
an

ts

Figure 1. A crossbar switch with VOQs

The speed/switching efficiency tradeoff of a VOQ cross-

bar critically depends on the design and implementation of

its crossbar scheduler. Most commercial crossbars today rely

on independent, per-input and per-output round-robin (RR)

arbiters, that yield maximal matchings after a few rounds of

handshaking. The basic time complexity of these schedul-

ing algorithms is approximately equal to that of two pro-

grammable priority arbiters [1], and increases linearly with

the number of iterations; hence, iterations normally come

along with a port speed penalty. Furthermore, although it-

erations improve the delay performance –as measured un-

der uniform traffic–, they do not improve switch through-

put under unfavorable, non-uniform traffic. In those cases,

speedup is usually employed to cover the missing through-

put; speedup however seriously affects the energy and the

effective capacity of switching systems.

On the other hand, backlog-aware (maximum weight

matching, MWM) schedulers of deterministic or random-

ized flavor can provably sustain full throughput under long-

term feasible traffic [2], [5], [3], [4], but their main draw-

back is hardware complexity, which increases with shrink-

ing scheduling time. Furthermore, many of these guarantees

presume impractically large VOQs, and come at the expense

of very large delays. A final concern is MWM performance

under non-feasible traffic –MWM can be unfair when out-

puts become congested; MWM may also starve flows.

In this paper, we combine ideas from RR-based and

backlog-aware, randomized schedulers, to propose an effi-

cient, fair deterministic crossbar scheduler, that is amenable

to fast hardware implementation (Section 2). Our analysis

shows that the proposed algorithm guarantees service to non-

16th IEEE Symposium on High Performance Interconnects

1550-4794/08 $25.00 © 2008 IEEE

DOI 10.1109/HOTI.2008.18

67

empty VOQs in O(N2) time, where N is switch size. Per-

formance simulations in Section 2.1, for realistic VOQ sizes,

demonstrate that the new algorithm practically achieves full

throughput under adverse, non-uniform traffic. Simple mod-

ifications are presented in Section 2.2 that in addition yield

fair, RR or weight-RR (WRR) allocation.

An overall description of the hardware design of the

crossbar scheduler for the case of 32 ports is presented in

Section 3. The new scheduler is implemented in a 130 nm
standard-cell ASIC environment, occupies roughly 3 mm2,

and computes a new crossbar matching every 3.2 ns. The

scheduler’s latency is also 3.2 ns. Along this research, we

came up with a new design for fast programmable-priority,

RR arbiters that gives significantly faster circuits than state-

of-the-art implementations (Section 3.2). These RR arbiters

perform the core function of our algorithm, and have a wider

applicability in networking and computer systems in general.

1.1. Overview of crossbar scheduling algorithm

We assume slotted time, and fixed-size packets (cells). A

time slot, or cell time, is the duration of a cell on a crossbar

or external line.

Our scheduler’s operation is depicted in Fig. 2(a). We

use one iteration of iSLIP (1SLIP), and denote as Mt its

matching outcome at time t. 1SLIP matchings are used to

configure the crossbar on a cell time basis. As shown for

cell time t + 1, besides VOQs state, 1SLIP receives as in-

put a preferred matching, computed in the previous pipeline

stage, during cell time t. (Please note that this matching is

computed using outdated VOQs state, hence it may refer to

VOQs that 1SLIP finds empty at t + 1.) 1SLIP tries to en-

force the preferred matching, and at the same time augment

it with not included ports.

Preferred matching computation is performed in parallel

with 1SLIP, in a pipelined manner2: while in cell time t
1SLIP computes a new crossbar matching (Mt), we com-

pute and compare the aggregate VOQ length (weight) of

Mt−1 and Mt−2; then, we select the one with greater weight

among these two as the preferred matching input to 1SLIP

for t + 1.

The underlying idea behind this type of scheduling with

memory is due to Tassiulas [2], and is quite simple: once

we find a matching with sufficiently good weight we try to

maintain it. Tassiulas first proposed to compare the weight of

the present match against that of a random one, while later,

Algo2, by Giaconne et al, used the notion of Hamiltonian

walk (HW) in the space of N ! possible matchings [3]. Using

these methods, one approximates MWM and achieves full

throughput for admissible traffic [3]. However, this is a blind

search, in a large space, that results in large delays, and poor

throughput for realistic (finite) VOQ sizes. We differ with

those methods in that we do not search the matchings space

randomly, but instead we delegate searching to 1SLIP.

2VOQ requests undergo just the 1SLIP’s delay, i.e. one cell time.

Mt−1S

SVOQ−size
Sel. Max

SVOQ−size
Sel. Max

MtMt−1

Mt

Mt+1

Mt−2

SS

1−SLIP

1−SLIP

1−SLIP

set crossbar

set crossbar

set cr..

1−SLIP

Sel. Max
VOQ−size

preferred
matching

set...

time
cell

t−2 t−1 t+1t

cell time t−1

set ...

(a) new scheme

(b) previous schemes

HW
iSLIP

HW
iSLIP

augment augment
Select max Select max

VOQ−sizeVOQ−size

set crossbar

cell time tstep 1 step 3

step 2

iSLIPiSLIP

Figure 2. Searching for large-weight matchings.

The performance of our method, as described so far, suf-

fers due to the synergy of the following facts: (a) 1SLIP

searches for maximal matchings, and is oblivious of match-

ing weights; (b) the use of memory improves 1SLIP by pre-

ferring larger weight matchings, but may settle with match-

ings that although locally better are in fact poor.

Our algorithmic novelty is that we systematically remove

edges from the present preferred matching in order to escape

from such local maximums. After the removal of an edge,

some input and output ports get released: 1SLIP can com-

bine these ports with other not included in the present pre-

ferred match, and find a new, possibly better configuration.

Our edge removal method secures “good” present match-

ings, while it can increase matching size, from one cell time

to the next, even when VOQs are non-uniformly loaded.

The overall scheduler is simpler, faster, and more efficient

than previously proposed schemes that try to speedup the

search of Algo2 via “random” maximal matchings, produced

by iSLIP like circuits [6] [5]. As shown in Fig. 2(b), these

systems perform the following operations sequentially in ev-

ery cell time: step 1) compute a new match (e.g. via iSLIP),

and a random match via HW; step 2) compare the weights

of these matchings against the weight of the matching se-

lected in the previous cell time; step 3) run a new maximal

matching round in order to augment the winning match.

One could possibly pipeline these operations, but doing

so straightforwardly, two 1SLIP circuits would normally be

required. Our pipelined method saves one such circuit: the

same 1SLIP circuit augments preferred matchings, and also

searches for new ones, via edge removals, in a unified man-

ner. We do not need and do not use the HW.

Performance simulation results, for realistic VOQ sizes,

demonstrate that our pipelined solution achieves close to

full throughput, outperforming the non-pipelined schemes of

Fig. 2(b) that provably sustain full throughput.

To the best of our knowledge, our algorithm is the first

to achieve close to full throughput with the time complexity

of 1 iteration iSLIP. Recently, a new derivative of Exhaus-

tive iSLIP (EiSLIP) [7] was shown to yield good matchings

from the first iteration [8]. Both EiSLIP and our system fa-

vor “heavy” VOQs, and improve matching size over mul-

tiple cell times. But EiSLIP improvements are only maxi-

68

mal, whereas ours can additionally be non-maximal, which

is reflected in significantly better throughput performance3.

Moreover [8] does not consider fairness, which, as shown in

Section 2.2, is quite poor for EiSLIP-like algorithms.

2 Crossbar Scheduling Algorithm

Our scheduling core is 1SLIP that follows the 3-phase

regime of input-request, output-grant, input-accept. 1SLIP

runs in normal mode for most of the time, and periodically

toggles to an escape mode for one cell time. First we de-

scribe these two modes; then, we present the state machine

that visits them in a time division multiplexing manner. F [i]
denotes the preferred output of input i (= ∅ if it has none).

NORMAL (F): F is the preferred matching computed in the

previous cell time. G[j] and A[i] denote the (normal) RR

next-to-serve pointer of output j and input i respectively.

–Filter input requests: if input i has VOQ cell for output

F [i], it sends a preferred request to that output –this pair

will definitely be matched–, and filters out the requests for

all other outputs. Otherwise, if F [i]= ∅ or the VOQ for F [i]
is empty, input i sends a request from any active VOQ.

–Output grant: if output j receives a preferred request it

grants that request. Otherwise, it scans inputs onwards, start-

ing from the one selected by G[j], and grants the first re-

quest.

–Input accept: input i scans outputs onwards, starting from

the one selected by A[i], and accepts the first grant.

–Pointer update: iff a match, preferred or non-preferred, is

achieved between input i and output j in the first scheduling

round4, then G[j] = (i + 1)mod N , A[i] = (j + 1)mod N .

Please note that matching F may refer to VOQs that are

empty when 1SLIP runs; also, some input ports that have

cells in their VOQs may not be included in F . In these cases,

the respective inputs broadcast requests. 1SLIP will try to

match those inputs with similarly available outputs.

Similar to EiSlip ([7]), the request filtering at inputs that

know they will be matched reduces request contention: out-

puts should better not receive request from (thus not grant to)

inputs that will definitely match with their preferred output.

ESCAPE (F, M): F and M are the preferred matching and

the crossbar schedule computed in the previous cell time.

eG[j] and eA[i] denote the (escape) RR next-to-serve pointer

of output j and input i respectively.

First we nullify all preferences: F [i]=∅, ∀ i. (There are

no preferred requests.) Then:

–Input request: input i sends a request from any active

VOQ. When these are more than one, input i will not send a

request from the VOQ corresponding to M [i] –we crop pre-

viously matched pairs in order to examine “new” matchings.

–Output grant: as in normal mode, except that now output

j scans requests starting from the input selected by eG[j].

3We compared our results with that in [8]; the latter are very similar with

EiSLIP results, which are presented in Section 2.1
4For generality, we give a multi-iteration description.

–Input grant: as in normal mode, except that now input i
scans grants starting from the output selected by eA[i].

–Pointer update: as in normal mode, except that now eG[j]
and eA[i] are updated, not G[j] or A[i].

SCHEDULER FSM: As shown in Fig. 2(a), at time t we per-

form two operations in parallel: (i) we compute the weight of

matchings Mt−2 and Mt−1, using the present VOQ lengths,

and then set F t equal to the matching with maximum weight;

(ii) we execute 1SLIP in normal or escape mode, as below –e
and s are integer constants.

if (t mod e == 0) then

ESCAPE-MODE(Ft−1,Mt−1);

else

if (t mod s 6= 0) then

Ft−1[I] = ∅; // in local escape

I = (I + 1) mod N ; // we remove an edge

end if

NORMAL-MODE(Ft−1);

end if

The escape mode supplies radically new matchings, and

for this reason we refer to it as global escape. We try a new

global escape (nullifying all preferences) once every e cell

times. When doing so yields a better matching, the algo-

rithm will start preferring that new matching; otherwise, it

will simply recover to the previous one.

Properties: The escape mode prevents starvation, as we

have an 1SLIP run once in every e cell times, that provides

deterministic service delay to non-empty VOQs. Although

we filter previously matched pairs out (see request phase in

escape mode), this does not alter the situation.

Theorem 1: In the worst-case, every non-empty VOQ gets

served in O(N2) time. Proof: In the worst-case, 1SLIP

serves any non-empty VOQ in N2 + (N − 1)2 cell times.

This is computed in [9] as the delay of a tagged output, j,

to grant a tagged input, i, plus the delay it takes input i to

accept the grant. While escape-1SLIP “slips” to this tagged

pair, making one step every e cell times, it will skip a pair

p at time t, only if p was served by normal-1SLIP at t − 1.

In this case, eG[j] and eA[i] will be one position closer to

pair i→j (maybe even selecting it) at time t + e. Hence, the

tagged pair will be served within the 1SLIP delay multiplied

by constant e. �

Escape-1SLIP may yield relatively poor matchings, but

its effect on performance can be controlled. Assuming for

example that the average matching size required to sustain an

input load ρ is S(ρ), and that normal-1SLIP achieves S(ρ),
while escape-1SLIP yields at least an average matching size

of 0.1 · S(ρ). Then the net average matching size, NS(ρ)
will be greater than (e − 0.9) · S(ρ)/e.

Hence, e can be adjusted so as to minimize any possible

throughput losses due to escape-1SLIP. For e= 100, NS(ρ)
≥ 99.1

100
S(ρ). For e= 1, i.e. always in escape mode, the al-

gorithm performs similarly with ordinary 1SLIP. Larger e
values allow preferred (good weight) matchings stay on, im-

69

Figure 3. Local escape increases match size & weight.

proving throughput. But too high an e value may reduce the

number of new matchings examined.

Removing edges: While in normal mode, we examine

whether nullifying some input preference will improve the

matching quality –see “remove an edge” comment in sched-

uler’s FSM. Specifically, we maintain a pointer, I , that visits

inputs, one by one, in separate cell times, as controlled by

parameter s, nullifying the preference of each visited input.

These local escapes search for improved matchings that lie

close to the presently preferred one. As we discuss below, lo-

cal escape tends to increase, in a non-maximal way, the size,

and possibly the weight of the currently preferred matching.

See the example in Fig. 3, which, for simplicity, ignores

pipelining delays. When input 1 is visited by I at time 15,

input 1 and its previously matched pair, output 2, get re-

leased from their mutual commitment, and try to pair with

other ports. Thanks to our pointer update policy, after last

being matched by preference at cell time 14, pair 1→2 has

the lowest normal-1SLIP priority: G[2] = 2 and A[1] = 3.

Local escape allows unmatched inputs, which, up to now,

have been unable to find a free output5, like input 2 in Fig. 3,

to try match with any available output. On the other hand, the

released input 1 issues requests from all non-empty VOQs,

and can thus match with any targeted output (1 in our ex-

ample) that has no preferred pair. As with global escape,

the new matching will start being preferred if it is of larger

weight than the presently preferred match.

Importantly, when local escape removes an edge, it does

not needlessly harm the presently preferred matching: if all

ports “requested” by the released input, 1, are matched by

preference, then input 1 will pair again to its previously pre-

ferred output, 2, with no throughput penalty at all.

Local escape resembles the search of neighbor matchings

in APSARA [3]. In every cell time, APSARA computes as

many as N2 neighbor matchings and compares their weight,

whereas we just nullify entries of the preference vector.

2.1. Performance Evaluation

We used performance simulations in order to test our

scheduling algorithm, and compare its performance with that

of previous proposals. All VOQs, at every particular input,

share a buffer space of 214 cells, which for 64-byte cells

translates to 1 MByte per input. When this buffer is full,

5Because all outputs they request have a preferred pair.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.01

0.1

1

10

100

1000

5000

Normalized Load

M
e
a
n

 C
e
ll
 D

e
la

y
 (

C
e
ll
 t

im
e
s
)

iSLIP 1 iter
iSLIP 2 iter
iSLIP 4 iter
Proposed 1 iter
Proposed 2 iter
Proposed 4 iter

Figure 4. Delay under uniform traffic: multiple iterations.

arriving cells are discarded6. Each experiment was run 3 to

7 times, so as to achieve 5% confidence intervals with 95%

confidence.

We ran experiments under uniform traffic, and under the

hardest non-uniform traffic patterns that we found in the re-

spective literature: diagonal, power2, and zipf. Cell arrivals

were driven by an independent Bernoulli process at each in-

put –our results for bursty traffic show similar trends. The

switch size examined in this paper is N= 32.

Unless otherwise noted we use one scheduling iteration,

and we set parameters e= 100, and s= 3. We have se-

lected these values after extensive performance simulations

for switch sizes ≤ 64. For comparison purposes, we also plot

the performance of iSLIP, of EiSLIP, and of MaxDRDSSR

[6]. MaxDRDSSR operates as in Fig. 2(b); it uses the RDSSR

algorithm in step 1, and 1SLIP in step 3.

Fig. 4 depicts the delay performance under uniform traf-

fic for the proposed system and for iSLIP. Thanks to its em-

bedded matching augmentation, under low loads the pro-

posed system delivers delays very close to that of iSLIP.

For 1 iteration, the proposed system delivers about three (3)

times lower delay than ordinary 1SLIP, thanks to the request

filtering in normal mode.

Next we examine diagonal and power2 traffic. In diag-

onal, input i sends 2/3 of its traffic to output (2 · i + 2·i
N

)
mod N (this is the perfect shuffle pair of i), and the remain-

ing 1/3 to output (1 + 2 · i + 2·i
N

) mod N . Observe that this

is a shifted version of the diagonal traffic seen in previous

papers, where input i sends its traffic to outputs i and (i + 1)
mod N . We refer to the unshifted version as diagonal easy.

In power2, sometimes referred to as logdiagonal, every input

sends twice more traffic to output i than to (i + 1) mod N .

Fig. 5 depicts the results for the proposed system, and

for EiSLIP, 4-SLIP, and MaxDRDSRR. As can be seen, our

scheme delivers almost full throughput for both traffic pat-

terns, with its delay under power2 traffic being significantly

6Buffer sharing runs the danger of buffer monopolization, but many im-

plementations follow this approach.

70

0.5 0.6 0.7 0.8 0.9 1

0.1

1

10

100

1000

5000

Normalized Load

M
e

a
n

 C
e

ll
 D

e
la

y
 (

C
e

ll
 t

im
e

s
) Proposed − Diagonal

Proposed − Power 2
EiSLIP − Power 2
EiSLIP − Diagonal
MaxDRDSRR − Diagonal Easy
MaxDRDSRR − Diagonal
MaxDRDSRR − Power 2
iSLIP 4 iter − Diagonal

Figure 5. Delay under diagonal and power2 traffic.

higher than under diagonal7. All other systems saturate at a

load ranging from 0.75 to 0.9.

MaxDRDSSR performs well only under diagonal-easy.

Diagonal-easy is easy particularly for MaxDRDSSR, as in

every cell time t the RDSSR algorithm assigns highest prior-

ity to connections i→(i+t) mod N , i ∈ [1, N]; effectively,

MaxDRDSSR finds a large weight configuration in less than

N cell times, delivering almost ideal delay. However this is

not the case in general, as shown with MaxDRDSSR’s per-

formance for the shifted diagonal traffic. We also have re-

sults for a modification of MaxDRDSSR, which uses 1SLIP

instead of RDSSR at step 1. Essentially, this is the algorithm

examined in [5] complemented with the HW in step 1, and

the augmentation step 3. The approach presented in [5] per-

forms better than MaxDRDSSR under diagonal traffic, and

slightly worse under diagonal-easy.

Finally, Fig. 6 depicts switch throughput under Zipf traf-

fic, controlled by parameter k: input 0 sends to output i
with probability Zipf(i) = i−k/

∑N

j=1
j−k; probabilities

at other inputs are obtained by circularly shifting that of in-

put 0. Then, the output arrival rates at each input are ex-

changed according to the perfect shuffle permutation. Traf-

fic is uniform when k=0 and completely directed as k→∞.

We present plots for MaxDRDSRR, EiSLIP, and for the pro-

posed system. The proposed system achieves virtually full

throughput, while MaxRDRSRR’s throughput is below 0.8,

and that of EiSLIP below 0.85. The no-escape plot is the

proposed system with no global and no local escape (e=∞,

s=0). No-escape performs identically with EiSLIP for the

reasons described in Section 1.1.

We have also tested global-only, were we never perform

local escape, and local-only, where we never enter the es-

cape mode. Under diagonal traffic, local-only performs

slightly worse than global-only, but for Zipf traffic local-only

achieves close to full throughput whereas global-only below

0.9. These results indicate that searching from the scratch,

7Our comparison with with other “randomized” schedulers shows that

only MaxAPSARA [3] achieves similarly good delays.

0 2 4 6 8
0.7

0.75

0.8

0.85

0.9

0.95

1.0

Parameter k

N
o

rm
a
li
z
e
d

 T
h

ro
u

g
h

p
u

t

Proposed
No escape
MaxDRDSRR
EiSLIP
iSLIP 4 iter

Figure 6. Throughput under Zipf traffic.

as global-only does, is more beneficial when the matchings

space is relatively small –in diagonal every input has only

two VOQ candidates– but performs poorly as this space in-

creases. On the other hand, searching locally maybe more

slow but is more effective in a large matching space as it

improves, step-by-step, the presently preferred match.

2.2. Fair allocation of congested link bandwidth

Our algorithm prefers large VOQs, thus, similarly to

MWM, may distribute the bandwidth of congested (over-

loaded) outputs unfairly amongst unequally loaded VOQs8.

However this becomes problematic only when the requests

presented to the scheduler overbook some output port. In

[10] [11], per-output RR “credit” arbiters are deployed in or-

der to regulate the rate of aggregate output flows, and prevent

congestion expansion in multi-stage fabrics. In such sys-

tems, employing a MWM-like algorithm in internal switch-

ing elements would not affect port-to-port fairness.

If these arbiters are not in place already, following [12],

we propose to explicitly employ them. (Actually, the same

scheme can be used in conjunction with any unfair sched-

uler, not only MWM derivatives.) These RR arbiters are the

first to process VOQ requests, each serving one request in

every cell time. After serve, requests are registered in per-

flow counters. Our crossbar scheduler considers these coun-

ters as VOQs demand; it also use them to calculate matching

weight. Essentially, the “input” to the crossbar scheduler is

now the “output” of a RR output queued switch.

Observe that the RR arbiters operate in a first pipeline

stage, not affecting the critical delay of the crossbar sched-

uler circuit. Additional performance results –not presented

due to space limitations– show that these RR arbiters do not

harm the throughput performance presented in Section 2.1.

However, the cold-start delay under low load increases by

one cell time due to the additional pipeline stage.

In order to test fairness, we configured three flows, 1→1,

2→1, and 4→1, with arrival rates 1.0, 0.9, and 0.5, respec-

tively. Table 2 depicts flow service rates under the proposed

8As pointed out in [12], MWM is a dual to max-min fairness in that it

“first serves” the highly loaded queues, instead of the lightly loaded ones.

71

Flow: rate Proposed EiSLIP WFA

Base RR WRR Base RR Base RR

1-1: 1.0 0.51 0.33 0.16 1.00 0.33 0.25 0.33

2-1: 0.9 0.45 0.33 0.34 0.0 0.33 0.50 0.33

4-1: 0.5 0.04 0.33 0.50 0.0 0.33 0.25 0.33

Table 1. Service rates of 3 flows that overload output 1.

.

algorithm, the EiSLIP scheduler, and the WFA scheduler

[13], when the RR regulation arbiters are absent (Base col-

umn), and when they are present (RR column). The pro-

posed system favors the two heavy flows, and only sporad-

ically serves flow 4→1 –thanks to escape modes–, EiSLIP

serves only flow 1→1, as its VOQ is always non-empty, and

WFA favors flow 2→1 due to diagonals movement. But with

the RR arbiters all systems distribute equal rates to flows.

Furthermore, as in [11], one may use weighted round-

robin instead of plain RR arbiters, hence enabling sophis-

ticated QoS. Based on the previous configuration, we as-

signed a weight of 10, 20, and 30, to flows 1→1, 2→1, and

4→1, respectively. As shown in Table 2 (column WRR), the

proposed system, with WRR regulation arbiters, now serves

flows according to their weighted max-min fair shares.

3. Crossbar Implementation

In this section we present the hardware implementation of

the proposed crossbar scheduler. The scheduler’s organiza-

tion is shown in Fig. 7. It consists of two parts that are sep-

arated in two pipeline stages. The first part of the scheduler

is the weight computation stage, while the second part com-

putes the schedule for the crossbar. The weight that corre-

sponds to the current match is computed via a multi-operand

adder and a high-speed final adder. The weight computation

unit is unique in the scheduler and it is shared between all

inputs. Each input port has N request counters (one for each

output) that store the number of cells present in each VOQ,

as in [14]. Every cycle, each input broadcasts to the weight

computation unit the value of the request counters that corre-

spond to the matched output at the current cell time and the

previous cell time.

The schedule-compute stage takes as input the weights

computed in the previous cycle, by the first pipeline stage9.

The Maximum selector simply decides which one of the two

weights under comparison is larger. If the weight of Mt−1

is larger than the weight of Mt−2, then Mt−1 is selected as

a preferred match, and Mt−2 otherwise. Instead of adding a

multiplexer that selects between Mt−1 and Mt−2 and then

drive the result to the filtering unit we followed a differ-

ent approach that offers significantly faster implementations.

We use two filtering units per input that run in parallel, one

driven by Mt−1 and the other by Mt−2.

9For clarity, Fig. 2 presents weight computation and comparison (i.e.

Maximum Selector) being performed in the same pipeline stage. Here we

place them in separate stages so as to balance the pipeline.

Figure 7. Block diagram & layout of proposed scheduler.

Please note that the preferred matches Mt−1 and Mt−2

before entering the corresponding filtering units are at first

masked with the state of the current local escape and the

global escape that nullify either some or all the requests, re-

spectively. The set of the two filtered requests are given to

a multiplexer that forwards one of them to the final schedul-

ing unit, according to the decision made by the Maximum

selector that runs in parallel. In this way, the delay of the

filtering unit, as well as the masking operation, is partially

hidden since it overlaps in time with the computation of the

Maximum selector. The schedule-compute stage passes the

filtered requests to the 1SLIP core.

The overall scheduler was implemented in 130nm CMOS

technology using a standard-cell based design flow. The RTL

description was written in Verilog, and the circuit was syn-

thesized and placed & routed using Synopsys Design Com-

piler and Cadence SOC encounter, respectively. The final

layout of the 32× 32 scheduler is also shown in Fig. 7. It

occupies roughly 3 mm2 and operates with a clock period

of 3.2 ns. Next, we present the 1SLIP core that was used to

derive the aforementioned layout. Our 1SLIP core employs

a novel RR implementation that is described in Section 3.2.

3.1. The 1SLIP core

Each arbiter of the 1SLIP core is a programmable pri-

ority arbiter (PPA). Each PPA consists of the core arbitra-

tion logic that scans requests beginning from an arbitrary

position, denoted by vector P , and the pointer update logic

that updates P according to some policy (e.g. pure RR,

or as described in normal- or escape-1SLIP). The core ar-

bitration logic scans the input requests in a cyclic manner

beginning from the position that has the highest priority.

For example, if the ith request has the highest priority then

the priority is diminishing in a cyclic manner to positions

i + 1, i + 2, . . . , N − 1, 0, 1, . . . i − 1, giving to the request

i − 1 the lowest priority to win a grant.

72

An efficient PPA architecture, which we denote as Dual

Path, was presented in [1]. It utilizes two fixed priority ar-

biters (FPAs) that work in parallel. The upper FPA scans

requests starting from the highest priority one, up to position

N − 1. It does not scan range [0, P − 1]. The lower FPA

works on all incoming requests. If there is a request in the

range [P,N − 1], the correct output comes from the upper

FPA; otherwise, it comes from the lower FPA.

The output and the input arbiters of 1SLIP need to be

slightly modified in order to distinguish between preferred

and normal requests. Each arbiter accepts besides the N -bit

request vector an additional preference vector that marks the

preferred request. So in parallel to the core arbitration logic

we need an N -input OR tree to decide if there is an active

preference. If this case is true then the output of the core ar-

bitration logic is bypassed and the grant is given directly to

the active preference. This extra circuitry does not affect the

area of the PPA but inserts some non-negligible delay over-

head. In order to alleviate this problem, we designed a new

PPA that is significantly faster than Dual Path and speeds up

the 1SLIP core.

3.2 New programmable-priority arbiters

In this section we present an efficient PPA design. The

PPA takes as input a N -bit request vector, R, and produces

a N -bit grant vector G. We encode the highest priority posi-

tion in one-hot form, in variable P .

As in [1], the “priority transfer” signal, Ci, indicates

whether position i + 1 can produce a grant or not. Position

i gives a grant when it has an active request, and either Pi

or the incoming priority transfer signal Ci−1 is asserted. In

case of a grant, Ci is set to zero, and Gi is set to one. These

actions can be written as:

Gi = Ri · (Pi + Ci−1)

Ci = Ri · (Pi + Ci−1) (1)

Observe that the priority transfer signal CN−1 should be

fed back to position 0, i.e., CN−1 = C
−1, in order to guar-

antee the cyclic transfer of the diminishing priority. In order

to break the combinational loop and derive more efficient

designs we express the priority transfer differently. First,

we combine in one signal, Xi, the two sources of priority

transfer. The priority to i either comes from the previous bit

position, via Ci−1, or is set by Pi:

Xi = Pi + Ci−1 (2)

Next, we derive a recursive equation that connects Xi and

Xi−1. From (1) and (2) we can write Ci−1 = Ri−1 · Xi−1.

Replacing in (2), we get:

Xi = Pi + Ri−1 · Xi−1 (3)

Effectively, C terms have disappeared, and Xi depends

only on Pi, Ri−1, and Xi−1. Now the grant signal is com-

puted using Gi = Ri · Xi.

G

7

G

6

G

5

G

4

G

3
 G

2

G

1

G

0

R

5

R

6

R

7

R

4

R

3

R

2

R

1
 R

0

P

i:j

R

i:j

P

j-1:k

R

j-1:k

P

i:j

R

i:j

P

j-1:k

R

5

R

4

R

3

R

2

R

1

R

0

P

5

P

4

P

2

P

1

P

0

R

6

P

7

R

7

P

6

P

3

X

0

Figure 8. The proposed 8-input PPA that cycles the prior-

ity transfer signals inside the carry computation unit.

The recursive definition of Xi in (3) has exactly the same

form as the well known carry lookahead equation ci =
gi + pi · ci−1, where in place of the carry generate bit gi

we have here the priority signal Pi (called priority gener-

ate), and instead of the carry propagate bit pi we use the

inverted request signal Ri−1 (called priority propagate). Fol-

lowing adder design principles, we can define priority gener-

ate groups and priority propagate groups. Therefore, since

gi = Pi, pi = Ri−1 and p0 = Rn−1, the priority gener-

ate group that starts at j and ends at position i, with i ≥ j
is defined as Pi:j = gi +

∑i−1

k=j (Ri:k+1 · gk). The term

Ri:j denotes the group propagate term in the range i . . . j

and is defined as Ri:j =
∏i

k=j pk. For the degenerated case

Pi:i = gi and Ri:i = pi.

Using the group terms, Xi can be expressed as Xi =
Pi:0 + Ri:0 · Xin, where Xin = X

−1 denotes the incom-

ing priority transfer similar to the carry-in signal of an adder.

Due to the cyclical priority transfer R
−1 = RN−1, and

X
−1 = XN−1. The priority generate group term Pi:0 covers

the case where the priority is generated for the ith position

after having searched all positions [0, i − 1]. For the case of

the most significant bit position N − 1, the corresponding

group generate term PN−1:0 searches all the input requests

from input 0 to input N−1. Therefore, PN−1:0 is the desired

priority transfer signal for position N − 1, i.e. XN−1. From

this observation and the fact that XN−1 = Xin the equation

for Xi can be transformed as follows:

Xi = Pi:0 + Ri:0 · PN−1:0 (4)

Thus the ith position has the highest priority because ei-

ther the priority was generated in the range [0, i] or it is

coming from a more significant position, as declared by

PN−1:0, and has been propagated to i via the propagate

term Ri:0. In fact, if the priority is transferred circularly to

the ith position, then only the range [N − 1, i + 1] needs

to be examined. By definition, PN−1:0 can be derived by

any smaller group generate and propagate term as follows

73

N Proposed I Proposed II Dual Path

Delay Area Delay Area Delay Area

64 595 10593 740 8205 740 8990

32 510 4612 640 3542 640 4134

16 430 1961 550 1473 550 1948

Table 2. Delay (ps) and area (µm2) synthesis results, for

different number of arbiter inputs.

PN−1:0 = PN−1:i+1 + RN−1:i+1 · Pi:0. Thus, substituting

this relation to (4) and performing simple boolean algebra

manipulations we get that Xi = Pi:0 + Ri:0 · PN−1:i+1.

In this way, the redundant examination of requests [i, 0],
in the case of PN−1:0, has been removed, and the circular

operation of the priority transfer has been embedded inside

each relation. In order to better understand the derived rela-

tion we write the equations for X2 for a 4-input arbiter.

X2 = P2 + R1 · P1 + R1 · R0 · P0 + R1 · R0 · R3 · P3

As can be seen, each priority transfer bit Xi is computed in

parallel from the input bits without requiring any combina-

tional feedback loop.

An implementation of the proposed PPA, for 8 bits, is

shown in Fig. 8. The grant vector is computed in exactly

log2 N + 1 logic levels, as in ordinary FPA, i.e. faster than

in Dual Path. Also, no large fanout line is required, since

the cyclic nature of the priority transfer is performed inside

the carry-lookahead tree. The only drawback of the proposed

circuit are the long lines inside the priority transfer computa-

tion unit that increase its layout area. Although the extra ca-

pacitance added by these lines degrades by a small percent-

age the delay of the circuit, the overall circuit is significantly

faster than the most efficient previous implementation.

In order to quantify the delay savings of the proposed

PPA, separately from the complete scheduler implementa-

tion, we synthesized the new PPA and the Dual-Path de-

sign using Synopsys Design Compiler and the same 130nm

CMOS technology. For performance evaluation, we set the

available input capacitance of the circuits equal to that of a

drive-strength 2 inverter, and the output loading capacitance

four times larger than that. Each design was recursively op-

timized for speed, targeting the minimum possible delay.

Our results, shown in Table 2, demonstrate that the pro-

posed solution (Proposed I) is on average 20% faster than

Dual Path [1]. In fact, the delay of the proposed arbiter for

64 inputs is less than Dual Path’s delay for 32 inputs. The

delay savings of our solution can alternatively be traded-off

for reduced layout area. In column Proposed II, we sized the

gates of the our circuit for a delay target equal to the delay

Dual Path. As can be seen, Proposed II saves more than 16%

of layout area compared to Dual Path.

4 Conclusions

We proposed a new crossbar scheduling algorithm that

has the complexity of 1 iteration iSLIP. Performance simu-

lation results, for realistic VOQ sizes, demonstrated that this

scheduler achieves virtually full throughput under hard non-

uniform traffic patterns outperforming algorithms that prov-

ably yield full throughput. Analysis showed deterministic

time service guarantees to non-empty VOQs, while with sim-

ple modifications, the proposed algorithm was also shown to

yield fair (RR or WRR) allocation of congested link band-

width. We currently examine the crossbar throughput for

different VOQ sizes and also investigate the output bursti-

ness; Our preliminary results for uniform Bernoulli traffic

(100% load) show that the average burst size at the switch

outputs is approximately 4 cells.

Due to its simple structure, the new algorithm allows ef-

ficient pipelined hardware implementations. In order to fur-

ther improve the hardware design of the proposed scheduler

we described the design of efficient RR arbiters that offer

significantly faster implementations than previous solutions.

The new scheduler was implemented in 130nm showing that

it constitutes an attractive solution for high-speed and large-

size switches.

References
[1] P. Gupta, N. McKeown: “Design and implementation of a fast crossbar

scheduler”, IEEE Micro, Jan 1999.

[2] L. Tassiulas: “Linear complexity algorithms for maximum throughput

in radio networks and input queues switches”, IEEE INFOCOM, NY,

1998.

[3] P. Giaccone, B. Prabhakar, D. Shah: “Randomized scheduling algo-

rithms for high-aggregate bandwidth switches”, IEEE JSAC, May 2003.

[4] A. Dua, N. Bambos, W. Olesinski, H. Eberle, N. Gura: “Backlog aware

low complexity schedulers for input queued packet switches”, IEEE

Symp. on High-Perf. Interconnects, 2007.

[5] I. Keslassy, N. McKeown: “Analysis of scheduling algorithms that pro-

vide 100% throughput in input-queued switches”, Allerton Conf. on

Communication, Control, and Computing. Monticello, October 2001.

[6] J. Liu, C.K. Hung, M. Hamdi, C.Y. Tsui: “Stable round-robin schedul-

ing algorithms for high-performance input-queued switches”, IEEE

Hot Inteconnects, August 2002.

[7] Y. Li, S. Panwar, H.J. Chao: “Exhaustive service matching algorithms

for input queued swithes”,IEEE HPSR, Phoenix, April 2004.

[8] S. Mneimneh: “Matching from the first iteration: an iterative switching

algorithm for an input queued switch”, IEEE/ACM Trans. on Networ.,

February 2008.

[9] D. Serpanos, P. Antoniadis: “FIRM: A Class of distributed scheduling

algorithms for high-speed ATM switches with multiple input queues”,

IEEE INFOCOM, Tel Aviv, March 2000.

[10] A. Bianco, P. Giaccone, E.M. Giraudo, e.a.: “Performance analysis of

storage area network switches”, IEEE HPSR, Hong Kong, May 2005.

[11] N. Chrysos, M. Katevenis: “Scheduling in non-blocking buffered

three-Stage switching fabrics”, IEEE INFOCOM, Barcelona, April

2006.

[12] N. Kumar, N. R. Pan, D. Shah: “Fair scheduling in input-queued

switches under inadmissible traffic”, IEEE GLOBECOM, Dallas,

November 2004.

[13] Y. Tamir, H.C. Chi: “Symmetric crossbar arbiters for VLSI commu-

nication switches”, IEEE Trans. on Parallel and Distributed Systems,

January 1993.

[14] C. Minkenberg: “Performance of i-SLIP scheduling with large round-

trip latency”, IEEE HPSR, Torino, June 2003.

74

