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Abstract

The increasingly more stringent performance and power re-

quirements of Internet routers call for scalable IP lookup

strategies that go beyond the currently viable TCAM- and

trie-based solutions. This paper describes a new hash-based

IP lookup scheme that is both storage efficient and high-

performance. In order to achieve high storage efficiency,

we take a multi-hashing approach and employ an advanced

hashing technique that effectively resolves hashing collisions

by dynamically migrating IP prefixes that are already in the

lookup table as new prefixes are inserted. To obtain high

lookup throughput, the multiple hash tables are accessed in

parallel (using different hash functions) or in a pipelined

manner. We evaluate the proposed scheme using up-to-date

core routing tables and discuss how its key design parame-

ters can be determined. When compared with state-of-the-art

TCAM designs, our scheme reduces area and power require-

ments by 60% and 80% respectively, while achieving com-

petitive lookup rates. We expect that the proposed scheme

scales well with the anticipated routing table sizes and tech-

nologies in the future.

1 Introduction

The explosion of Internet traffic has pushed the technology

to seek for higher-throughput links and routers that can meet

the increasing demands of packet processing rates. While

current optical network technology already provides link

rates in excess of 40GBps, packet forwarding and filtering

engines start to become a bottleneck for routers [1]. To catch

up with the rapid increase of link rates, IP lookup in high

speed routers must satisfy higher lookup rates and scale with

the increasing routing table sizes. Processing rates of more

than 125 million lookups per second utilizing a million for-

warding entries are of practical interest [1].

IP lookup is a per packet process performed by a router.

Given an IP address, it aims at finding the longest prefix

match (LPM) among all the prefixes in a routing table. Cur-

rent techniques for IP lookup are divided into three cate-

gories: Ternary Content Addressable Memory (TCAM), trie-

based schemes and hash-based schemes. TCAMs [2–4] have

been the most favorable choice for high speed routers thanks

to their fast and constant lookup time. As table sizes in-

crease however, TCAM’s high cost and power consumption

become problematic. While various techniques try to alle-

viate the scalability problems, switching to alternative solu-

tions becomes more appealing.

Trie-based schemes use a tree-like structure to store pre-

fixes and a lookup is performed by traversing the tree based

on a portion of bits in a target IP address until an LPM is

found [5–7]. Unfortunately, the potentially large and unbal-

anced depth of a tree structure creates multi-cycle lookup

latencies and low worst-case throughput. Although many re-

searchers have identified different solution methods to ad-

dress these issues, the fundamental tie of the performance

and scalability of those schemes with the IP address length

remains a barrier to meeting the future demands.

Hash-based schemes use hash tables to store prefixes [8–

12]. Unlike trees, hash tables are flat data structures that have

the desirable property of key length independent O(1) laten-

cies and are easy to implement in hardware. Moreover, hash–

based schemes can potentially scale well with the increase

in table sizes, enabling a promising candidate for IP lookup

in the future. However, hash based schemes have three key

problems that must be addressed to be fully adopted for use

in a practical high-performance IP lookup engine. First,

hashing is inherently subject to collisions and requires res-

olution techniques that may result in unpredictable lookup

performance. The second problem arises when hash keys (IP

prefixes) include “don’t care” bits and these bits are used as

hash index bits. One would have to expand all the affected IP

prefixes to eliminate “don’t care” bits or simply give up us-

ing hash functions that depend on one of those bits. Lastly,

constructing an effective hash-based solution for the LPM

functionality is tricky. For instance, when each hash table

entry holds multiple prefixes, further steps are needed to de-

termine the LPM when a lookup results in multiple matches.

In this work, we propose a new hash-based IP lookup

scheme that can achieve high lookup throughput, high space

utilization and low power consumption. Our scheme is es-

sentially a multiple hash table (MHT) scheme that employs

multiple hash functions and a simple modified version of the

Cuckoo hashing algorithm [13]. It can resolve collisions ef-

fectively by migrating items that are already in the hash ta-

ble during an insertion operation. Our empirical results us-
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ing up-to-date core routing tables show that our technique

achieves a space utilization up to 90% by using less than 5%

of extra victim space to support a collision-free hashing.

Unlike previous hash-based IP lookup schemes, we do not

classify prefixes based on their lengths. Instead, we treat

them “equally” as they are inserted into the hash tables by

taking a set of fixed bit locations as hash bits independent

of their prefix lengths. We propose a technique called con-

trolled wildcard resolution (CWR) to handle the wildcard bits

that coincide with the hash bits effectively. We demonstrate

through experiments that CWR provides more flexibility and

control on the hashing methods and better hashing results

than existing techniques.

In summary, our proposed scheme can achieve the

same high lookup performance as the currently highest-

performance TCAM solution and enables 6× space reduc-

tion and 8× power savings. Compared with the most area-

efficient hash-based scheme known [9], our technique has

three times the lookup throughput and compares competi-

tively in terms of area efficiency.

The rest of this paper is organized as follows. Section 2

presents a summary of related work. We present the pro-

posed approach and techniques in Section 3, followed by an

experimental evaluation in Section 4. Conclusions are pre-

sented in Section 5.

2. Related Work

In this section, we focus only on hash-based techniques that

are directly related to our work. Many other previous works

are mentioned throughout the paper.

The first hash-based LPM proposal is the binary search

on prefix lengths [10]. Since hash functions can’t operate

on wildcard bits, prefixes are grouped based on their lengths

and stored in separate hash tables (or possibly in a single

hash table) using “valid” prefix bits as hash index. A lookup

then visits the tables in search for the longest matching prefix

sequentially or using a binary search method. This scheme

is intuitive and does not involve prefix expansion. However

its drawbacks include potentially long unpredictable lookup

latency, area inefficiency caused by load imbalance among

the tables, and lack of scalability to IPv6.

A way to “virtually” reduce the number of unique prefix

lengths and consequently the number of tables is to apply

controlled prefix expansion (CPE) [7]. CPE converts a pre-

fix of length L into a number of prefixes of longer length

(L + l), l ≥ 1 by expanding l of its wildcard bits into

their 2l possible derivatives. Therefore, an IP prefix table

having many distinct prefix lengths can be transformed into

a table with more IP prefixes that have less distinct prefix

lengths. The inflation of the number of prefixes however af-

fects the storage space adversely and the fewer the unique

prefix lengths desired, the larger is the inflation. Typically,

an optimistic CPE will expand a core routing table 2× when

targeting three classes of distinct prefix lengths and 4× when

targeting two of them. In addition, CPE will produce identi-

cal keys in the hash tables that come from different original

prefixes. Accordingly, an IP lookup may result in multiple

matches and longest prefix resolution is required. For that,

extra information (original prefix length) is needed for each

stored prefix, causing even larger space overheads.

Kaxiras and Keramidas [9, 14] proposed a space efficient

multi-hashing scheme called IPStash. It achieves excellent

space utilization and fewer expansions by classifying pre-

fixes according to their lengths (e.g., ≤ 16, 17 − 21, ≥ 21)

and using different hash indices to hash the prefixes of each

class to a single multi-hash table. As a result, wildcard bits

are excluded from hashing and at the same time good hash-

ing results are achieved. The reported area efficiency of

IPStash beats all previously proposed hash-based schemes.

However, its worst-case lookup time is sensitive to the num-

ber of classes, as the LPM searching requires iterative table

accesses until a match is found.

Dharmapurikar et al. [12] propose to use Bloom filters to

reduce the number of probes to hash tables. The idea is that

by programming each distinct length group of prefixes in a

separate on-chip Bloom filter and checking if the prefix is

a member of a specific group or not, one can economically

determine the exact off-chip hash table to access a priori.

Similarly, Song et al. [11] use Extendend Bloom filters to re-

duce the memory accesses within a hash table. While these

techniques can significantly improve the average lookup la-

tency and power consumption, they fail to guarantee a con-

stant lookup latency due to possible false positive responses

from the Bloom filters.

Most previous proposals are characterized by techniques

that divide prefixes into classes, based on their length. In

highly efficient schemes, however, the number of classes af-

fects the achievable throughput adversely [9]. Unlike previ-

ous studies, our work aims to improve lookup performance

by avoiding prefix classes. At the same time, we opt for high

area efficiency by employing powerful hashing techniques.

3. Our Approach

3.1. Basic architecture

Our scheme is based on a multi-level hash table (MHT)

technique [15] that uses d equal-size sub-tables, T1, . . . , Td.

They can be accessed in a parallel or pipelined manner by

using independent indexing or hash functions, h1, . . . , hd.

To support fast and flexible hash key calculation and match-

ing, each sub-table Ti is implemented using an efficient row-

oriented associative memory architecture [16].

Figure 1 depicts such a memory architecture. Each sub-

table Ti is a regular memory array (SRAM or DRAM) hav-

ing 2R rows that can be indexed independently by an R-bit

index generated by a hash function. Each row or bucket is

usually comprised of multiple search keys, which are fetched

and accessed simultaneously on a lookup. We conveniently

call the total number of key entries in the whole architecture

“available capacity” or “available space.”
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Figure 1. The Proposed IP Lookup Architecture

Each table is accessed using a hardware based index gen-

erator and a number of match processors compare the fetched

keys with the search key in parallel, resulting in constant-

time matching. The “Bit-Select” component is a reconfig-

urable mechanism that decides which bits participate in the

index generation ((R + F ) bits in Figure 1). When insert-

ing a prefix, wildcard bits may appear in the selected bits

for indexing and hence, the Bit-Select mechanism needs to

resolve this by prefix expansion and performing a set of in-

sertions. Section 3.3 discusses the Bit-Select mechanism and

hash functions further.

For a lookup in a MHT scheme, d independent hash in-

dices are created to search the d hash tables. In each table, a

multiple entry bucket is fetched into match processors, which

then compare the fetched keys (IP prefixes) with the search

key (destination IP address). If multiple prefixes match the

search key, the match processors must determine the LPM

among all the matching keys. The operation requires that the

length of the stored prefixes be known and hence this infor-

mation is kept with each prefix in the table. Assuming that

tables are accessed in parallel, a single lookup will be satis-

fied after one memory access cycle followed by the match-

ing process. The two operations are easily pipelined and a

throughput of one IP lookup per cycle is obtained.

3.2. Hashing IP prefixes using multiple hash functions

In general, hashing with multiple hash functions is known

to perform better than hashing with a single hash function

since each item has multiple possible choices to be hashed

in the tables. Figure 2(a) and (b) show an example of how

prefixes of an IP table are distributed in a single- or multi-

hashing scenario respectively. The table has 185K prefixes

from AS1103, found in [20]. The x-axis represents the ta-

ble’s buckets (total of 4096) and the y-axis depicts the load

(a) (b) (c)

Single Hash Table

Multi Hashing using 

3 Hash tables 

Figure 2. Space Utilization of (a) Single Hashing (b)
MHT (c) MHT with migrations allowed.

of the buckets. Hence, the whole plot area represents the

total storage capacity needed and the dark area its utiliza-

tion. When single hashing is used, the max bucket load is

234 items. When multi-hashing is applied, the bucket size

is reduced to 3× 49 = 147 without any collision, therefore

improving the space utilization. Note that when an item is

inserted in the multi-hashing scheme, the least loaded bucket

is chosen among the three possible options.

All hash functions in our scheme use the same bit posi-

tions in a prefix or a destination address, and they generate

a skewed hash index by using an XOR-folding technique as

depicted in Figure 1(b). XOR-folding [17] has been widely

used in hardware-base hash index generation mainly due to

its simplicity. It folds an (F + R)-bit key into an R-bit hash

index through a simple process of XORing every F bit with

the R bits into a final hash bit. Skewness can be applied by

a simple rearrangement of the F bits that are XORed. Using

such a fast hash function allows us to hide the index genera-

tion latency by pipelining with the actual memory access.

While employing multiple hash functions improves over-
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all hashing results, Figure 2(b) shows that the distribution of

hashed IP prefixes is far from uniform. Even with three hash

tables, much of the space remains unutilized. An attempt to

improve hashing with more powerful or adaptive hash func-

tions may slow down the lookup speed. In what follows, we

present a technique that improves the space usage and yet,

does not affect the critical lookup path.

Improving hashing with rehashing during insertion. We

improve the multi-hash scheme by applying a rehashing

technique that allows the migration of an existing item in the

hash table to a new location during an insertion operation.

The goal of this rehashing is to distribute the hashed items

more evenly for higher space utilization (Figure 2(c)).

Our rehashing technique is similar in spirit to the Cuckoo

hashing algorithm [13], which resolves collisions by rear-

ranging keys into other possible “nests” to make space for the

key being inserted. The original Cuckoo hashing is however

an iterative algorithm and its complexity poses a serious hur-

dle for an efficient hardware implementation of a high-speed

IP lookup engine. On the other hand, our proposed technique

considers only a single iteration of the Cuckoo algorithm.

The insertion algorithm works as follows. Assume an in-

sertion policy that keeps the load among the d sub-tables bal-

anced by placing each new item into the sub-table with the

least loaded bucket. In the case of a tie, the item is inserted

in the leftmost table according to the d-left scheme [18].

Then, at some point, a collision may appear if an item x
cannot be inserted into tables Ti, i = 1, . . . , d because

buckets Ti[hi(x)], i = 1, . . . , d are full. In such case, a

single iteration of the Cuckoo algorithm will try to resolve

the collision by checking whether an item y at some bucket

Ti[hi(x)], 1 ≤ i ≤ d, can migrate to some other table

Tj 6= Ti. This requires that a bucket Tj[hj(y)] has an empty

entry to accommodate the item y. If such an item y is found,

then it can be moved and x will take its place. Otherwise, the

colliding insertion of x cannot be resolved–a situation that is

called unresolved collision or crisis.

According to this algorithm, prefixes may begin to mi-

grate only after an inserted prefix finds all its possible “nests”

full–a situation that will occur more frequently as tables be-

come more occupied. When an insertion activates a rehash-

ing process, its insertion time will vary depending on how

many items are subject to migration; the worst-case scenario

occurs when inserting an item fails even after searching for

all possible c × d moves, where c is the number of items per

bucket.

3.3. Selecting hash bits from keys

A hash function uses bits extracted from predefined loca-

tions in a prefix, independently of its length. We call the

actual hardware logic that extracts those bits from the hash

key Bit-Select mechanism. We discuss in this section how

this mechanism can be configured to select a set of bits that

are generally desirable to participate in the index generation.

We call such a set of bits a Bit-Select configuration. Wrong
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Figure 3. Prefix Length Distribution

decisions on how many and which bits should be used for the

index generation may result in inefficient space usage.

Researchers have made two interesting observations from

different IP routing tables in the Internet’s core, which have

been found to be constant over the years. The first key ob-

servation is the relatively fixed distribution of the prefixes

according to their lengths that is depicted in Figure 3. Most

prefixes (∼98%) have lenghts between 16 and 24 bits and 24-

bit prefixes comprise about 54% of the table. Prefixes longer

than 24 bits are very few (<1%) and there are no prefixes less

than 8 bits. The second key observation concerns each bit’s

apparent randomness or entropy–how unbiased it is towards

one or zero in a routing table. As a study in [9] pointed out,

regardless of prefix length, high entropy bits start from the

6th bit and reach the prefixes’ maximum length.

According to the first observation, only the 8 leftmost

bits of the prefix should be used for hashing since “don’t

care” bits naturally cannot participate in the hash index con-

struction. However, such a restriction not only creates un-

balanced hashing results (because of the bits’ low entropy),

but also sets a limit on the number of bits that can be selected

for indexing, thereby narrowing the design and configuration

space. A straightforward method of including wildcard bits

in hashing is to “expand” the affected prefixes using a sys-

tematic method like CPE [7] such that the wildcard bits are

eliminated. Once prefixes are expanded, the new expanded

prefix database can be hashed. Obviously, the more wildcard

bits selected, the larger the inflation of the IP routing table

and hence the storage overhead. Therefore, it is generally

desirable to restrict the selection to leftmost bits.

On the other hand, hash functions that use high entropy

bits are expected to demonstrate probabilistically random in-

dices and hence, balanced hashing result. Obviously, such

knowledge is useful when deciding which bits to use. Based

on the second observation, seeking high entropy bits leads

to the rightmost bits of the prefixes, which conflicts with the

original attempt of selecting leftmost bits.

Consequently, choosing a Bit-Select configuration re-

quires a fine balance between efficient hashing and storage

overhead. The flexibility of the Bit-Select logic in selecting

any combination of bits allows us to examine the trade-off in

more detail. For that, we need first a mechansim to support

wildcard bits effectively.
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Prefix Method Prefixes 
Insertion

Indexes 
Generated

Final inserted 
items

101*** CPE 10100* 110 0** @ 110 
10101* 111 0** @ 111
10110* 110 0** @ 110 
10111* 111 0** @ 111 

101*** CWR 11* 110 0** @ 110 
111 0** @ 111

Figure 4. CPE and CWR example

Dealing with wildcard bits. Traditionally, the CPE tech-

nique expands the prefixes up to a certain desired length L
and then all the L leftmost bits can be used for the hash in-

dex construction. If we consider using only a subset of the

expanded bits in hashing, some of the expanded prefixes be-

come redundant and do not need to be hashed. On one hand,

such a case is desirable since it may reduce the storage over-

head without affecting the hashing performance much. On

the other hand, CPE cannot exclude such redundant prefixes

in the process of expansion and hence, they must be detected

and omitted during the prefix insertion process.

In this work, we propose controlled wildcard resolution

(CWR) to handle wildcard bits in hashing, which has sev-

eral desirable properties such as real-time wildcard bit res-

olution at insertion time and high flexibility. Unlike CPE,

CWR does not initially expand the prefixes before perform-

ing insertions. Instead, it performs expansion at insertion

(index generation) time if there are wildcard bits that actu-

ally participate in hashing. According to this technique, the

hashing bits can be selected to be any of the 32 (or 128 for

IPv6) bits of the prefix, a property that allows us to do sensi-

tivity analysis on several combinations of bits for a Bit-Select

configuration.

Figure 4 shows an example of how CPE and CWR work

differently. The example prefix has three bits, followed by

three wildcard bits. The hash function uses the three bits

that are underlined. According to CWR, the expansion rate

is two since only a single wildcard bit appears in the index

generator. In the case of CPE, the single IP prefix would

have to be pre-expanded at least up to the LSB that is used

by the hash indexing–in our example, up to the 5th bit–and

then all the four expanded IP prefixes have to pass through an

insertion process, one by one (although they might not actu-

ally be inserted in the table). Although both techniques will

eventually result in the same IP routing table inflation, CWR

spends less time for an insertion, it is more flexible, and it is

amenable to simple and fast hardware implementation.

Bit-Select sensitivity analysis. Having a flexible Bit-Select

mechanism and the CWR technique that can support it, we

can explore how different Bit-Select configurations affect the

hashing results and the storage requirements. Before we con-

tinue, we define as extra provided capacity (Cp) the differ-

ence between the total capacity of a hash scheme and the

nominal (unexpanded) size of the routing table that is to be
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Figure 5. Effectiveness of Different Bit-Select Con-
figurations

hashed. Our sensitivity analysis determines which Bit-Select

configuration should be used, given a certain storage capac-

ity limit.

Figure 5 shows how different Bit-Select configurations

behave when we hash a routing table of nominal capacity

N into our 3-level multi-hash scheme with the total capacity

of 2 × N (i.e., Cp = N ). For this example, we use table

AS4777 from [20] for which N = 217K. We examine all

possible configurations that result from selecting 17 bits out

of the total 32 bits of each prefix. Each configuration is rep-

resented on the graph by a point (x, y) where x represents the

total expansion of the hashed prefixes that is produced by the

specific configuration as a percentage of the extra provided

capacity Cp. y indicates the hashing performance using as

metric the number of unresolved collisions. Note that com-

binations that result in expansions larger than the limit of the

extra provided capacity (i.e., >100%) are not considered. As

expected, configurations that produce expansions close to the

limits of the available space perform poorly since no hash

function is capable of fully utilizing the available space per-

fectly. On the other hand, configurations that result in small

expansions imply a selection of bits with poor entropy (left-

most selection) and hence, poor hashing performance.

From the experiments, we find that any configuration that

can keep the expansion between 20% and 90% of the ex-

tra provided capacity results in less than 5% of unresolved

collisions. It is important to mention here that it is prefer-

able to select configurations that use as many bits as possible

while their expansion remains in the desirable interval. To

make this clearer, we show in Figure 5 the resulting trend

lines1 for three different sets of combinations, where each

of them combines a different number of bits to form a con-

figuration (e.g., 16, 17 or 18 bits). Obviously, bigger sets

feed the hash function with more information and therefore

they are expected to improve the hashing performance. For

example, 18-bit configurations result in less unresolved colli-

sions in general (< 2%) and perform better than 17 or 16-bit

configurations. However, bigger sets tend to shrink fast the

“window” of the feasible configurations. Based on the same

1Trend lines are a polynomial interpolation of the data points.
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example, 18 bits is the maximum set of bits that gives a prac-

tically applicable configuration. If 19 bits are used instead,

the expansion will be more than 100% for any configuration

and hence, such a selection should be avoided. Note that the

number of the selected bits ((R+F ) bits in Figure 1) does not

necessarily change the indexing length (R bits). These are

the bits that participate in the hash index generation where

a 12-bit index can be constructed by folding 4 bits from a

16-bit set or by folding 6 bits from an 18-bit set.

3.4. Handling unresolved collisions with a victim TCAM

Practically, a “good” hash scheme will result in a very low

probability of having unresolved collisions on updates. To

guarantee deterministic lookup rates, however, it is necessary

to ensure that for certain loads, no unresolved collision will

ever occur. Although theoretical analysis can give us prob-

abilistic bounds related with the hashing performance of the

d-left scheme [18] or Cuckoo variations [13, 19], it requires

certain assumptions that might not accurately reflect the real

behavior of the IP routing tables and the real design organi-

zation, and often suggests worst-case scenarios that lead to

completely impractical implementations.

Instead, our work aims to derive a feasible solution that

can be effectively suitable for high speed IP lookup. To deal

with unresolved collisions, we use a small special victim

space that can accommodate the small number of colliding

items as some previous hashing solutions proposed, e.g., [9].

The victim space can be a small TCAM or some over-

flow/extra SRAM buckets that can be plugged in the MHT

scheme as an extra small table. Adding such a small table

in the parallel access path is not expected to increase the

power consumption significantly. Moreover, we believe that

the extra table along with the tables of our MHT scheme are

suitable for implementing in pipeline structures and can be

optimized for power savings.

4. Evaluation

4.1. Experimental setup

For a comprehensive experimental evaluation of the pro-

posed scheme, we have developed and used a set of soft-

ware tools that can report in detail how the studied hashing

techniques and design configurations perform when IP rout-

ing tables are incrementally mapped and updated. We use

a number of real IP routing tables obtained from [20] that

differ in geographical as well as chronological position. For

fair comparison of different IP lookup solutions in terms of

their power and area, we base our study on product-grade im-

plementation results reported in [22–24], that use the same

130nm process technology. Our baseline design consists of

3 sub-tables indexed by 12-bit skewed hash indices gener-

ated using 16 selected bits. Note that all the hash-based ap-

proaches in comparison are based on the same architecture

and have identical access latency since we assume that they

carry the same index generators in the critical access path.
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4.2. Results

Figure 6 is similar in concept to Figure 5, except that it shows

a comparison between the hashing behavior of the Cuckoo-

enhanced proposed scheme and the regular d-left scheme

(for 16-bit configurations). Again the total capacity avail-

able is 2 times the nominal capacity of the original routing

table. As expected, the enhanced scheme outperforms the

regular d-left MHT scheme since the migration of prefixes

can resolve most of the collisions that occur. The remaining

unresolved collisions are below 5% of the original load N
for any configuration in the interval of 20% to 80%. Such

a bound could quite accurately define the appropriate size

of the victim space that could be used to accommodate the

colliding items.

The size of a victim TCAM is dependent on the effective

load factor, which is defined as the ratio of the the nominal

routing table size to the available space capacity. For ex-

ample, the previous discussion suggests that the victim size

should not be more than 5% of the original load (N ) when

a load factor of N/2N = 0.5 is given. Figure 7 shows the

expected victim space requirements as a function of the ef-

fective load factor for three different routing tables. The Bit-

Select configuration was chosen to be somewhere in the de-

sirable interval. As expected, further shrinking of the avail-
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Figure 8. Design Space Exploration.

able space (larger effective load factor) increases the number

of collisions and larger victim TCAM is required to handle

them. On the other hand, offering more capacity (smaller

effective load factor) lessens the need for extra storage and

hence a trade-off appears between the effective load factor

and the TCAM size requirements.

Exploring the design space. We seek to further explore the

design space in order to acquire deeper knowledge of our

scheme and possible improvements. We examine the effect

of different hash index lengths as well as different number of

sub-tables. In Figure 8(a), for a given effective load factor

and a fixed number of sub-tables equal to three, we vary the

length of the hash index. For consistency, every x-bit index

is constructed by using the same 18 bits, so, what actually

varies is the number of the folding bits in the hash function.

For instance, a 12-bit hash index is generated by folding 6

bits while a 15-bit hash index folds only 3 bits. Shorter hash

index implies two effects: First, given that storage capacity

is kept unchanged, the narrower the address space the larger

the bucket’s size and therefore more hash entries are avail-

able per bucket. Second, a shorter hash index is constructed

by using more folding bits over the same amount of informa-

tion and hence is expected to distribute better the hash items

among the address space. Thus, based on the previous facts,

a shorter hash index improves the hashing results. How-

ever, a shorter index implies having more entries per bucket,

which when implemented in hardware means larger mem-

ory lines and more prefixes to be fetched simultaneously for

matching comparisons. These are all important design fac-

tors that affect the complexity, area and power consumption.

In a similar plot, we vary the number of sub-tables while

using the same 12-bit index length (Figure 8(b)). Each ta-

ble can use a different hash function, so more tables imply

more powerful MHT schemes even though each bucket has

less capacity. As it can be observed, a significant improve-

ment appears when going from a single hashing to double

and triple hashing. More hash tables seem to offer diminish-

ing benefits, which do not justify the additional complexity

and area overheads.

The results shown in Figure 8 were produced by using the

routing table AS1103 with 185K entries. A higher load fac-

tor implies less total capacity since the nominal routing table

size remains the same. We expect that different IP routing

tables follow the same trend.

Comparison with state-of-the-art TCAM designs. Our

scheme can be viewed as an attempt to shift the bottleneck
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Figure 9. Space Efficiency: a comparison with IP-

Stash and a standard d-left MHT.

of a hash-based lookup scheme like IPStash from the lookup

throughput to the insertion time and relieve the IP lookup

critical path from any timing barriers. Specifically, our im-

plementation achieves a very high throughput of one lookup

per cycle, accelerating the lookup rate by three times com-

pared with IPStash, and avoiding the unpredictable lookup

rates of the fast but imperfect Bloom-filter-based schemes.

To make our implementation efficient, however, we need

to spend more time during insertions or updates of the IP

routing table. In the worst-case, incremental updates require

c×d+1 memory accesses, where c is the bucket’s size and d
the number of sub-tables. However, such cases are extremely

rare, unless the tables are heavily utilized. For lighly utilized

tables, most of the insertions can finish within a single mem-

ory cycle.

In terms of space efficiency, Figure 9 shows that even

though the applied hashing techniques are quite powerful

and achieve high space utilization, table inflation prevents

us from outperforming the highly space efficient IPStash.

TCAM-based IP lookup provides high throughput but

suffers from large area requirements and power dissipation.

On the other hand, IPStash has low area and power require-

ments but lower throughput. Our scheme combines high

throughput, low area requirements and power savings. Fig-

ure 10 compares the area and power requirements of the

three different schemes when their memory arrays are im-

plemented with either static or dynamic memory cells.

Even with a load factor of 0.5 (and including a 5%

victim TCAM), our implementation with dynamic memory

achieves up to 60% reduction in area requirements and 80%

of power savings compared with a state-of-the-art dynamic

TCAM design [22–24]. Compared with the hash-based IP-

Stash scheme, although area requirements per entry are iden-

tical, total area requirements are slightly more. This is be-

cause, we assume (for fairness) an IPStash with a high load

factor of 0.8 and thus fewer total entries–since it is more

space efficient than our scheme. Although IPStash is as-

sumed to keep a routing table in a smaller memory array,

its overall power consumption is be much higher since, on

average, it requires 2.5 memory accesses per lookup [14].
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In summary, our experiments show that our scheme can

operate in a collision-free mode under a fair Bit-Select con-

figuration and a load factor of more than 0.65. For such a

load factor, we suggest the use of a victim TCAM with size

no more than 5% of the initial load. Larger victim TCAMs

can be used to improve the load factor. For current routing

tables, a 12-bit index generated by a set of 18 bits is prefer-

able. The design can be expanded accordingly as the size of

routing tables increases. Having a single memory access per

lookup allows us to achieve a lookup throughput equal to that

of TCAMs. At the same time, the highly optimized hashing

strategy of our scheme results in a significant reduction in

power consumption and area.

5. Conclusions

This paper presented a new hash-based IP lookup scheme

that is both storage efficient and high performance. The fol-

lowing contributions are made and findings presented:

• We introduce a multi-hash, multi-table approach to

building a hardware IP lookup engine that achieves sin-

gle memory access latency/throughput per lookup. One

may access the hash tables in parallel for the smallest

lookup latency or choose to access them in a pipelined

manner to save power at the same high lookup rate.

• We find that simple fast hash functions can work suffi-

ciently well if certain relocations of items are allowed

during hashing and if key characteristics of the prefixes

are taken into consideration. We have developed and

used a design flow that analyzes the performance of a

set of given hash configurations and automatically de-

rives key design parameters.

• We present a controlled wildcard resolution (CWR)

technique to aid hashing wildcard bits in IP prefixes. It

does not require that the prefixes be expanded en masse

before table construction. Rather, CWR resolves wild-

card bits in the hash function when a prefix is actually

inserted to the hash table in a simple, elegant way.

• We present a detailed empirical study that shows the

efficacy of the proposed scheme using a set of real IP

routing tables. Specifically, we show that the proposed

design can reduce area and power requirements by 60%

and 80% respectively when compared with state-of-

the-art TCAM designs, and has the advantage of high

and constant lookup rate when compared with other ad-

vanced hash-based IP lookup schemes.

While we recognize the potential of power savings with

the pipelined table lookup in our scheme, we have not ex-

plored the design space of such an architecture in this paper.

Our current research investigates the hash algorithms and

hardware design strategies geared toward further reducing

power consumption based on the idea of pipelining, without

compromising the area efficiency and performance we obtain

in this paper.
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