
Constraint Repetition Inspection for Regular Expression on FPGA

Miad Faezipour and Mehrdad Nourani
Center for Integrated Circuits & Systems

The University of Texas at Dallas, Richardson, TX 75083
{mxf042000,nourani}@utdallas.edu

Abstract— Recent network intrusion detection systems (NIDS)
use regular expressions to represent suspicious or malicious
character sequences in packet payloads in a more efficient way.
This paper introduces a new basic building block based on Non-
deterministic Finite Automata (NFA) hardware implementation
to support complex constraint repetitions in regular expressions.
This block is a customized counter capable of handling any type
of constraint repetition, applicable to any sub-regular expression.
We also introduce optimization techniques to reduce the area and
improve the overall performance. We have implemented SNORT
IDS regular expressions in hardware by taking advantage of the
basic NFA building blocks, our proposed counting block and
our proposed optimization techniques. We report experimental
results for our architecture that verify area saving and perfor-
mance improvement.

Index Terms— Network Intrusion Detection System, Non-
deterministic Finite Automata, Regular Expression, Constraint
Repetition Inspection.

I. INTRODUCTION

A. Background

Regular expression is, technically, a defined grammar that
uses standardized syntax conventions to specify patterns
[1]. Unlike static patterns, a regular expression (RegExp)
can specify complex patterns of character sequences, thus
making it attractive for use in complex pattern searching
[2]. UNIX utilities and programming languages such as
PERL have regular expressions as their key powerful feature.
Regular expressions are extensively used in networking
applications, due to their powerful expressiveness. One
recent application is their use in network intrusion detection
and prevention systems (NIDS/NIPS) to represent strings
or patterns corresponding to malicious data. Snort IDS
[3] analyzes packet headers, and further inspects packet
payloads for any hazardous content. Nowadays, many
IDS handle their desired rules in the form of regular
expressions. For example, SNORT IDS rule-set contains
over 500 regular expressions and over 2,000 static patterns
(patterns that are not expressed in the regular expression
form) [3] [4]. Snort IDS follows the Perl Compatible
Regular Expression (PCRE) syntax. Consider: alert
tcp $HOME NET 5400 -> $EXTERNAL NET any;
pcre:"/∧Blade\s+Runner\s+ver\s+\d+/smi"
which is a v2.7 SNORT IDS rule [3]. This rule warns
of any packet payload content that includes a string
matching regular expression "/∧Blade\s+Runner\s+
ver\s+\d+/smi". Notations such as ∧ and + stand for
specific character meanings in RegExp’s. See Table I for
more explanation. In this particular example, the RegExp

matches patterns that begin with Blade, followed by one or
more whitespace characters, followed by Runner, followed
by one or more whitespace characters, followed by ver,
followed by one or more whitespace characters, followed by
one or more 0-9 digit characters, and then followed by /smi.

String matching is one of the most computationally intensive
tasks for intrusion detection. Since software approaches cannot
meet the time budget for high data rates, they are considered
highly inefficient for high-speed networking. Hardware solu-
tions such as FPGA implementations are of more interest, due
to their high throughput and reconfigurability.

Unlike Deterministic Finite Automata (DFA) based so-
lutions that allow only one active state at a time, Non-
Deterministic Finite Automata (NFA) designs allow multiple
active states at a certain time. DFA-based approaches are
attractive for sequential designs in mostly software solutions,
which require only one active state at a time. On the other
hand, NFA-based approaches well suit parallel architectures,
due their inherent structure of allowing multiple active states
at a time. This feature makes NFA solutions highly suitable
for hardware designs [4]. Moreover, if the DFA set of input
symbols (which is 28 symbols when considering the extended
ASCII codes) is expressed as Σ, a DFA would require up to
O(Σn) states to represent a regular expression of length n in
the worst case [4] [5]. The same RegExp would only require
O(n) states in a NFA representation [5], which is a huge advan-
tage. Briefly, DFA-based approaches require huge amount of
hardware resources, and thus suffer from state-explosion. On
the other hand, with their compact hardware structure, NFAs
indeed provide an attractive solution. In this paper, we focus
on NFA-based approaches for RegExp matching circuits in
hardware.

B. Main Contribution and Paper Organization

Ever since Sidhu and Prasanna [6] proposed basic building
blocks such as (un-constraint repetition) meta-characters in
NFA to implement regular expressions on an FPGA, many
others have continued this interesting field of research. Though
many techniques were presented to complete or optimize the
hardware implementation of RegExp meta-characters [7] [8]
[9], there is still room for much more improvement. Our
contribution to this matter is the design and implementation
of a customized counting block to efficiently handle constraint
repetitions in IDS regular expressions. Constraint repetitions
are extensively seen across practical rule sets such as the
current Snort v2.7 IDS rules [3]. The conventional act of un-
rolling the circuit to successive repetitions is highly inefficient.

16th IEEE Symposium on High Performance Interconnects

1550-4794/08 $25.00 © 2008 IEEE

DOI 10.1109/HOTI.2008.14

111

TABLE I

LIST OF BASIC META-CHARACTERS/SYNTAX IN REGULAR EXPRESSIONS.

Meta-Character/Syntax Definition
Kleene Star “∗” Zero or more repetitions of the preceding Sub-RegExp [6].
Concatenation A Sub-RegExp followed by another Sub-RegExp [6].
Alternation “|” Union (OR) of two or more Sub-RegExp’s [6].

Question Mark “?” Zero or one repetition of the preceding Sub-RegExp [13].
Plus “+” One or more repetitions of the preceding Sub-RegExp [7].
Dot “.” Matching any character except newline [4].

Negation “∧” All characters except the following Sub-RegExp in square brackets [7].
Start “∧” Matching the following Sub-RegExp at the beginning of a string after newline [4].

Dollar “$” Matching the end of a pattern stream followed by linefeed and carriage return [7].
Backslash “\” Escapes the following meta-character, returning to its literal meaning [4].

Count Constraint repetition of the preceding Sub-RegExp (partially implemented in [4] [10] [11]).
\s Matching the whitespace character [4] [6].
\d Matching any of the 0-9 digit characters [4] [6].
\w Matching any word character including letters and digits [4] [6].
\n Matching the newline (linefeed) character [4] [6].
\r Matching the carriage return character [4] [6].
\t Matching the tab character [4] [6].
\x Matching the hexadecimal value that follows [6].

Instead, a counting mechanism customized for this purpose can
significantly improve the area cost and performance.

Our counting block is different in many ways from the
previously introduced counting feature described in [4] [10].
The novelty of our proposed block is threefold. First, it
offers a customized counter that can take care of all types of
constraint repetitions, namely Exactly, At Most, At Least and
Between blocks. All these types of constraint repetitions are
implemented in one block, rather than having separate units
for each, as introduced in [4]. Second, our counting block is
capable of applying any type of constraint repetition to any
type of sub-regular-expression. To the best of our knowledge,
this feature has not been addressed in earlier approaches.
In [4] [10] [11], the counting block could only be applied
to a single character, which limits the counter application
to single character counts in SNORT IDS rules. A large
percentage of SNORT rules contains constraint repetitions for
single characters. Our counting mechanism has the capability
of dealing with group character counts, which also exist in
IDS rules. Third, we propose a more cost-efficient circuitry for
the Alternate (“|”) meta-character that is applied to a number
of single characters in a pattern rule. This also applies to
a range of numbers or range of characters (e.g. [0 − 9] or
[a−z], [A−Z], or [A−Za−z]). This optimization technique is
especially useful when single character alternates occur within
patterns that also contain constraint repetitions.

The rest of this paper is organized as follows. In Section
II, we briefly take a glance at prior work related to network
IDS regular expression matching circuits in hardware. Our
customized counting block for constraint repetitions is pro-
posed in Section III, and the overall architecture is explained
in detail. We elaborate on the overlapping feature of the
counter design in the same section. We introduce our optimiza-
tion techniques for reducing the area of the Alternate meta-
character and the counter unit in Section IV. Experimental
results are summarized in Section V. Finally, concluding
remarks are in Section VI.

II. PRIOR WORK

Many researchers have investigated the regular expression
matching circuits in hardware. Floyd et al. were the first to
implement non-deterministic automaton (NFA) based regu-
lar expression matching in hardware [12]. Then, Sidhu and
Prasanna [6] proposed the basic building blocks in NFA
to implement regular expressions in hardware. They used
a character comparator for each and every character in the
RegExp, which resulted in high hardware cost. The design was
capable of processing one character (one byte) per clock cycle.
Later, Clark et al. [9] proposed the character decoder instead
of the character comparator, to save much of hardware and
interconnecting area. The authors also exploited parallelism to
process multiple bytes per clock, which significantly improved
the throughput.

Optimization techniques such as sharing common sub-
strings of RegExp rules has been extensively studied in [13]
[7]. In [13], the authors take advantage of sharing prefix
patterns, and achieved an area reduction of 37% compared
to the conventional approach [6]. The authors used JHDL
(a JAVA-Based Design Tool) to describe circuits by writing
a JAVA code that constructs the circuit via JHDL libraries.
Authors in [7] [8] introduced controlling units to efficiently
take advantage of sharing infix patterns, as well as sharing
common prefix patterns. These techniques led to an area
reduction of 70% compared to the conventional approach.

In contrast to NFA-based approaches, DFA-based solutions
have also been widely used to design RegExp matching
circuits. Moscola et al. [14] developed a content scanning
module using DFAs to implement static patterns for IDS. The
authors used the JHDL tool to construct the hardware more
efficiently. Authors in [15] designed a custom microcontroller
to implement regular expression matching circuits in hardware.
Their approach was a DFA-based approach that stored patterns
in memory tables, which gave the reconfigurable capability
to update regular expressions at run-time. Authors in [16]

112

[17] proposed minimization and pattern re-write techniques
to reduce state explosion conditions that may occur in DFA-
based approaches.

Customized logic circuits and Content Addressable Mem-
ories (CAM) has been another solution to efficient pattern
matching in hardware. Authors in [18] [19], use CAMs and
Ternary CAMs, respectively, to achieve giga-bit rate pattern
matching engines highly efficient for network security. How-
ever, these approaches allow static pattern matching, and are
not very feasible for RegExp matching. The ternary feature of
TCAMs that has the capability of storing don’t-cares in addi-
tion to 1’s and 0’s, do not allow much of flexibility as desired
for RegExp patterns. Limited regular expression matching is
provided using these techniques. In this regard, Sourdis et al.
[20] proposed a hybrid approach to initially decode patterns
before the CAM-based search, and used pipelining techniques,
to achieve higher frequency throughputs.

The main RegExp meta-characters and syntax notations
are listed in Table I. Definition and reference to the pa-
pers that proposed the NFA building block for each meta-
character/syntax has also been provided in this Table. Note
that the meta-character implementations should be applied
to any sub-regular expression directly. The counting meta-
character has been addressed in [4] [10] [11]. These ap-
proaches, however, can only be applied to single character
patterns, and require the traditional unrolling mechanism for
constraint repetitions applied to a group of characters. Authors
in [21] discuss the difficulties in applying the counting meta-
character to a group of characters. They suggest a control unit
to keep track of the number of characters (states) in the sub-
pattern. This solution was eventually useful to detect constraint
repetitions applied to only sub-patterns with finite lengths. The
authors mentioned that the generic problem of implementing
a matching circuit for constraint repetitions applied to a group
of characters with unknown and infinite lengths, remains as
an open issue. In this work, we focus on the counting meta-
character and propose solutions to the problems others have
encountered.

III. COUNTING META-CHARACTER DESIGN

The counting meta-character, basically, looks for successive
matches of a specified sub-RegExp in any form of the four
types of constraint repetitions. A brief description of all four
types of constraint repetitions is provided in Table II where
“(Sub-RegExp)” denotes the sub-regular expression that the
constraint repetition is applied to. For example, the last row
in Table II means finding a match for the range of 3 to
5 successive repetitions of the substring “abc”. Our counter
block is designed to handle all types of constraint repetitions
that may appear in regular expressions.

The conventional approach to deal with constraint repeti-
tions is to unroll (or cascade) the pattern into the number
of repetitions required. However, constraint repetitions of
nearly one thousand repetitions or more have been seen across
SNORT IDS rules [4]. This can easily consume a huge portion
of hardware resources, and is clearly inefficient. In addition to
the inefficient unrolling operation, some sort of controlling

TABLE II

TYPES OF CONSTRAINT REPETITIONS IN REGEXP’S.

Type of
Constraint Repetition Notation Example

Exactly (Sub-RegExp){n} (abc){3}
At Most (Sub-RegExp){,n} (b){,100}
At Least (Sub-RegExp){n,} [∧\n]{1000,}
Between (Sub-RegExp){n,m} (abc){3,5}

rst_cnt
inc
g
i

q

o

i o

Sub-Circuit

Counter

Sub-RegExp Unit

Sub-RegExp UnitCounter Reset Unit

for At Least Block

output

input
rst

i o

m
n

clk
rst
g

n
m
clk

Figure 1. Architecture of counting meta-character.

mechanism is inevitably required for the hardware imple-
mentation of the At Most, At Least and Between constraint
repetition types. For example, consider the Between type
RegExp “(abc){3,5}”. The conventional approach would be to
consecutively replicate the matching circuit for concatenated
characters “abc” five times. Moreover, a control circuitry (e.g.
some OR gates) is also required to distinguish the third, fourth
and fifth repetition of “abc”. This is why it is essential to
design a counting block to handle constraint repetitions more
efficiently.

Figure 1 illustrates the overall architecture of our counting
block. The input to the design is the output of the previous sub-
RegExp, which is ORed with the output of the sub-RegExp
that the constraint repetition is being applied to. This output
signal is fed to a counter block which is incremented whenever
the desired sub-RegExp has been detected. Signal q is the
counting value of our counter block. Essentially, the counter
block value q is incremented for successive matches of the
sub-RegExp pattern. We now explain in detail all different
units of our counter building block.

A. Sub-RegExp Unit

Sub-RegExp is the pattern string that the counting meta-
character is being applied to. This can be any sub-string such
as a single character, a group of characters, a sub-regular
expression having fixed or variable length characters, or even
strings containing meta-characters. In our design, whenever the
sub-RegExp is detected, the inc signal becomes high, which
in turn, increments the counter. See Figure 1.

113

c

not a and not d d

a b

S1 S2 S3 S4
Increment

Counter

not c and not d

Counter
Reset

Counter
ResetS0

d

not b and not d d

not a and not d

a

not d d

d

Figure 2. State diagram of the counting mechanism for RegExp “d(abc){n}”.

B. Counter Reset Unit

This unit is directly related to the sub-RegExp pattern, and
is configured when the sub-RegExp is defined. For a single
character sub-RegExp, this unit is simply an inverter attached
to the output of the sub-RegExp unit. However, for a group of
characters, it is more than just an inverter. The circuit consists
of multiple states that identifies a mismatch for the sub-
RegExp. Basically, if the input stream contains any character
other than the ones in the sub-RegExp, or includes the sub-
RegExp characters, but messes the consecutive property that
the sub-RegExp count demands, the counter should reset. As
an example, consider the RegExp “d(abc){n}”, where n is an
arbitrary number. Figure 2 shows the state diagram for NFA
construction of the RegExp for the counting mechanism. At
states S0 and S1, the counter should reset. State S4 is when
the counter should be incremented. The sub-circuit to reset
the counter can be easily designed using this state diagram. In
Figure 3, the dashed box shows the logic circuit to reset the
counter for RegExp “d(abc){n}”. Note that in this RegExp,
“(abc){n}” is preceded by character d. Therefore, the flip-
flop and AND gate for character d is connected to the input
of sub-RegExp “(abc){n}”, as shown in Figure 3. In order
to generalize the counter reset circuit for any sub-RegExp, all
we need is to generate the negation of the intermediate states
to produce the non-consecutive property for the sub-RegExp
count.

C. Counter

This is a customized counter unit that increments the count
value q on the rising edge of the clock, if inc signal is
active. This signal becomes high whenever the sub-RegExp
is detected. The counter has a global reset signal (rst) as well
as a local one (rst cnt). The global reset is used for power-
on initialization. The local reset signal resets the counter
whenever the reset sub-circuit (explained in the previous sub-
section) becomes active. The counter is also designed such that
if the counter has reached its maximum value m, the counter
should reset through this signal. The counter takes n and m
as inputs to determine the range of the count when needed.
Controlling signals to the counter inc and rst cnt are generated
within other units of the design, as discussed earlier. Signal g
is an input that indicates whether the constraint repetition is
of the At least type or not. Signal o is the final output of the
design, which indicates when the sub-RegExp containing the

counting meta-character has been detected. Logic Equation for
output signal o can be written as:

o =
{

1 if (n ≤ q ≤ m)
0 otherwise

(1)

This Equation indicates that depending on the constraint
repetition type, signal o remains high when the count value q
is in between n and m.

D. Sub-Circuit for At least Block

The At Least block with notation “(sub-RegExp){n,}” can
be written as “(sub-RegExp){n}(sub-RegExp)*”. As we have
the Exactly type implementation through the counter, for At
Least block we use an Exactly block followed by zero or more
repetitions of the sub-RegExp. Thus, in this unit, signal g is
used to OR the counter output with the “(sub-RegExp){n}(sub-
RegExp)*” sub-circuit.

In summary, the parameters in our counting mechanism can
be classified as follows:

• Exactly n: (sub-RegExp){n}, where m = n and g = 0.

• At Most n: (sub-RegExp){,n}, where n = 1, m > n and
g = 0.

• At Least n: (sub-RegExp){n,}, where m = n and g = 1.

• Between n and m: (sub-RegExp){n,m}, where m > n
and g = 0.

E. Dealing with Overlaps

Overlapping in RegExp patterns is defined as conditions
where the input stream contains the RegExp pattern that itself,
appears within the same RegExp pattern [15]. For instance,
the RegExp “telephone | phonebook” causes an overlapping
condition for the input stream “telephonebook”. The common
term “phone” appears in both alternated patterns, and thus
should result in two matches, one after phone, and the other
after book. Detecting overlapping conditions is important for
an IDS, since an attacker can execute the attacks that may be
overlooked by the overlapping condition [15].

Unlike most DFA-based approaches, RegExp matching cir-
cuits using NFA basic building blocks inherently have the
capability of detecting overlapping matches. This is due to
the fact that in this approach, each character is processed per
clock cycle through the character decoder and the designated
character flip-flop. Thus, overlapping conditions in the input
stream eventually get through by activating the character flip-
flop multiple times, without missing any matching character.
DFA-based approaches, however, would need more edges and
possibly more states to take care of the overlaps.

We show that our counting building block for the constraint
repetition meta-character does not need to have the capability
of detecting overlapping matches, and thus could save hard-
ware resources cost. To justify this, note that there are only
three locations where a constraint repetition may be placed in
a RegExp rule. The beginning, in between, or at the end. To
be more clear, we consider these three cases and explain why
overlaps are not of any concern:

114

b c

output

D Q

g=0

a
D QD Q

inc
rst_cnt

Sub-Circuit
for At Least Block

"1"

clk d

n=3

oi

Sub-RegExp

2
2

o

Counter

rst_cnt

g
inc

rst

n

i

clk
m q

o
rst
clk
m=3

D Q

r
e
d
o
c
e
D

Counter Reset Unit

a

c

b

D Q

h

D Q

D Q
D Q

Sub-RegExp

cba

Input Character

8
d

c

b

aC

r
e
t
c
a
r
a

8-256

Figure 3. Sub-circuit configuration for counter reset for RegExp “d(abc){3}”.

• At the Beginning: Having a constrained repetition of the
Exactly or Between type at the beginning of a RegExp
pattern is indeed an issue, and may cause missing the
detection of the string if overlaps exist. For example,
consider the RegExp pattern: “[∧\n]{100}ba+”. If the
input stream contains more than a hundred (e.g. 104)
characters that are not the newline character (\n), fol-
lowed by b, and then followed by a number of a’s,
a match should be detected. Overlapping takes place
here, and the counter should consider the last hundred
characters that were other than newline. However, our
counter would reset after the first hundred non-newline
characters, and would start counting up to only four by the
time the next characters (b followed by a number of a’s)
are received. This would lead to a mismatch. Practically,
almost no rule in SNORT IDS database starts with an
Exactly or Between type of constraint repetition, and
hence, our counting block with no overlapping capability
will not produce any match problems. Also, note that
patterns starting with the At Least block will be able to
detect overlapping conditions. This is due to the inherent
structure of the At Least block that includes the Kleene
-star character “*”, which is not a constraint repetition
factor, and is capable of detecting overlaps. In rare
cases where a RegExp should begin with the Exactly or
Between types of constraint repetitions, the At Least block
can be implemented instead, to avoid mismatches caused
by overlapping conditions.

• In Between: When a constraint repetition of the Exactly
or Between type occurs in between a RegExp string, over-
laps would lead to wrong detection of the string. Consider
the RegExp “ab{3}c”, where a constraint repetition is
located in the middle of the string. The detector should
not report a match for the input stream “abbbbc”, while
if the counter had the overlapping detecting capability,
it would have reported a match. Thus, finding overlaps
is not only useless for this case, but also misleading,
producing a false positive. The case where constraint
repetitions are in between a RegExp pattern rule is the

majority case in SNORT IDS rules, which can be handled
by our design.

• At the End: When a constraint repetition is located at the
end of a RegExp pattern, finding overlaps does not make
any sense either. Authors in [10] also pointed out that
overlaps located at the end of a pattern may not be useful.
Let us consider the RegExp “abc{4}”, where a constraint
repetition of the Exactly type occurred at the end of the
string. If the input stream is “abccccc”, we should only
get one match when the first four c’s are detected right
after ab, and not any longer. This is similar to the case
where a constraint repetition is the only substring of a
RegExp rule (which never occurs in SNORT IDS rules).
In this case, we should note that overlaps don’t really
even matter. The reason is that if a match corresponding
to a particular rule is found for an input stream, overlaps
would just add to the number of matches. Reporting only
one match for a rule is enough to mark the input stream
suspicious. There is no reason to report that a stream is
suspicious several times. Even though when considering
overlaps, the locations of the matches may differ. They
will still be very close to the first one found, since
they were generated due to an overlapping condition that
would be have been near the first one. A processing unit
hereafter, takes care of analyzing the suspicious streams,
and locates where the matches were found.

IV. OPTIMIZATIONS FOR AREA REDUCTION

In this section we introduce two optimization techniques to
improve the area cost of our counter design.

A. Alternate Meta-character

The Alternate (union) meta-character “|” is used to OR a
group of sub-regular expressions. The conventional way of
implementing this meta-character is the approach that Sidhu
et al. [6] presented as one of their NFA basic building blocks.
Figure 4 (a) shows the conventional implementation of the
“(a|b|c|d)” RegExp. As an alternative, the character lines
from the character decoder could be ORed at the beginning,
and the character flip-flops could be shared. Figure 4 (b)

115

QD

i

clk

o

b dca
QD QDQD a

b
c
d

clk

i oD Q

(a) Conventional. (b) Optimized.

Figure 4. Implementation of “(a|b|c|d)” RegExp.

shows our optimized circuit for “(a|b|c|d)”. Note that this
optimization technique can only be applied to the alternation
of single character patterns, including alpha-numeric ranges.
Rules that require the negation of a character class (e.g.
[∧0−9] can also take advantage of this optimization technique
by ANDing (instead of ORing) the negated characters at the
beginning. Alternation of groups of characters still requires
the conventional implementation style, because unlike single
characters, a group of characters cannot be directly taken
from the character decoder. Thus, they cannot be ORed at
the beginning, and hence, our optimization technique cannot
be applied to them. Fortunately, a large portion of the SNORT
IDS rules contain the alpha-numeric ranges as well as other
single character alternations. In addition, many SNORT IDS
RegExp rules have the single character alternated within con-
straint repetitions (see Section V). By taking advantage of this
optimization technique, the area cost of these type of circuits
can be significantly reduced compared to the conventional
approaches.

B. At Least Block

We have previously implemented the At Least (sub-
RegExp){n,} circuit by implementing the sub-RegExp Exactly
block, followed by zero or more repetitions of the sub-RegExp
circuit (see Section III-D). This requires an extra replica of the
sub-RegExp unit plus a few gates, which is costly if used for
every constraint repetition in RegExp’s. Note that more than
70% of the constraint repetitions in SNORT v2.7 IDS rules are
of the At Least type [3]. Therefore, having an area efficient
design for the Counter unit is essential. The Counter unit is
designed such that output signal o remains high when the value
of q is between n and m (based on what type of constraint
repetition is desired). However, we can remove the sub-circuit
that was required for the At Least block implementation by
effectively taking signal g into account, directly in the Counter
unit. Output signal o should be high for all type of constraint
repetitions except the At Least type when q is between n and
m, and should remain high when the q value has reached m
or higher for the At Least type. Note that the count value
q is incremented whenever successive repetitions of the sub-
RegExp has occurred. To avoid overflow, we intentionally
remain in count value q = m after the count has reached m, for
the At least type only. The At Least block resets the counter
any time the local counter reset signal rst cnt becomes active.
The logic relationship 1 for output signal o can now be written

1Symbols · and + stand for Boolean notations of logic AND and logic OR,
respectively.

TABLE III

ALTERA STRATIX II EP2S60F672C5 DEVICE UTILIZATION FOR A 12-BIT

COUNTER BLOCK.

Resources Used Available Utilization
Percentage

Total ALUTs 56 48,352 <1%
Total Registers 14 51,182 <1%

Total Pins 43 493 9%

as:
o =

{
1 if (g · (n ≤ q ≤ m))+(g · (q = m))
0 otherwise

(2)

This design is much more cost efficient compared to the
earlier one, as it only adds a few logic gates while omitting
the extra sub-circuit for At Least block entirely.

V. EXPERIMENTAL RESULTS

A. Simulation of Counter Unit

A 4-bit special counter unit was designed using Syn-
opsys tools [22] to implement the RegExp “d(abc){3,5}”.
Timing simulation in QuartusII environment [23] for input
stream “cadabadaabccadabcabcabcabcabcabcabcabcccc...” 2

is shown in Figure 5. The waveform clearly shows the counting
value q, and output o on each clock cycle. The constraint
repetition in this RegExp is of the Between type, and thus, the
output is high for counts 3, 4 and 5 of the sub-RegExp “abc”.

Since the largest value of constraint repetitions inspected
in SNORT IDS rules is 2082 (slightly greater than 2048)
[4], a 12-bit counter would be sufficient in the worst case.
Table III summarizes the hardware resource utilization of a 12-
bit counter block using EP2S60F672C5 device of the Stratix
2S60 FPGA family series. As can be seen, our counter block
is constructed using a very small portion of the logic cells
available in the FPGA.

Based on the results reported by the tool, our system has a
maximum clock frequency of fmax = 368.32MHz. Since our
design can process one byte per clock cycle, the system can
achieve an overall throughput of 2.95Gbps.

B. Area Savings

The area saving of our optimization technique for alterna-
tion is directly related to the number of single characters that
are being alternated. It is clearly seen that if x single characters
are alternated in a RegExp using the Alternate meta-character,
the conventional circuit would contain x flip-flops and x AND
gates, plus an x-bit OR gate and lots of interconnects. The
optimized circuit would only contain one flip-flop and one
AND gate (no matter how large the value of x is), plus the
x-bit OR gate and very few interconnects. Hence, our area
saving compared to the conventional approach is:

ΔA =
Total Unoptimized Logic−Total Optimized Logic

Total Unoptimized Logic
(3)

2The ASCII codes for a,b,c and d in hexadecimal are 61, 62, 63 and 64,
respectively.

116

Figure 5. Timing simulations of the “d(abc){3,5}” RegExp circuit for different input characters.

In our experimentation, the unoptimized case is conven-
tional implementation of RegExp matching circuit [6]. The op-
timized scenario corresponds to our implementation in which
the single character alternation and optimized At Least block
in the counter are incorporated. If A f f represents the area of
a flip-flop, AAND denotes the area of a 2-input AND gate, and
the area of an x-bit OR gate is shown as AORx−bit , our single
character alternate area saving equation in percentage can be
formulated as follows:

ΔA =
(x−1) ·A f f +(x−1) ·AAND

x ·A f f + x ·AAND +AORx−bit

×100% (4)

The sub-RegExp “[A − Za − z]” as one of the frequently
used sub-patterns in SNORT IDS rules, alternates 52 single
characters. Our optimization technique in this case results in
98% less flip-flops and 98% less AND gates compared to the
conventional approach.

Timing characteristics of the optimized technique is similar
to the un-optimized approach, and is not adversely affected. In
the conventional approach, only one of the character flip-flops
followed by an AND gate would activate the OR gate. Hence,
the critical path of the optimized circuit (which goes through
an x-bit OR gate, a flip-flop and an AND gate), remains the
same as the conventional approach.

To measure the area saving, three different regular expres-
sions from SNORT rules v2.7 [3] have been implemented
on Altera FPGA. We have used our counter mechanism and
have taken our optimization techniques into account. Table IV
compares the area cost of our approach versus the conventional
approach in terms of 2-input NAND gate count. The last
column in Table IV clearly verifies our area reduction com-
pared to the conventional design. The area savings increase for

TABLE IV

AREA COMPARISON FOR THREE SNORT REGEXP’S USING OUR

APPROACH AND THE CONVENTIONAL DESIGN.

RegExp Approach Cost [Gates] Area Saving

RegExp Conventional 1918 -
(i) Ours 432 77.48%

RegExp Conventional 2892 -
(ii) Ours 597 79.35%

RegExp Conventional 5540 -
(iii) Ours 1004 81.94%

(i) /\x28\s*name\s*\x22[∧\x22]{260,}/smi
(ii) /∧http\x3a\x2f\x2f[∧\n]{400}/smi

(iii) /∧Content-Disposition\x3a(\s*| \s*\r?\n\s+)
[∧\r\n]*\{[\da-fA-F]{8}(-[\da-fA-F]{4}){3}-
[\da-fA-F]{12}\}/smi

practical (e.g. SNORT) rules where the number of iterations
of the constraint repetitions, or the number of single character
alternations is quite large.

Overall, 52% of the entire SNORT IDS RegExp rule
database contains counting meta-characters and single char-
acter alternates (or character classes and ranges). Table V
shows the statistics on SNORT IDS v2.7 (as of Feb. 2008)
[3] and area savings achieved by applying our mechanism.
Three common rule sets (oracle, web-misc and web-cgi), and
also the entire SNORT IDS RegExp rule set, made of 53 sets,
have been analyzed. Our approach leads to about 40% total
area savings compared to the conventional (cascaded topology
as explained earlier) approach.

VI. CONCLUSION

We introduced an efficient counting block for constraint
repetitions in regular expressions. Our optimized counting

117

TABLE V

STATISTICS ON SNORT IDS RULES

Rule Set # of Static Patterns # of RegExp Rules # of Constraint Repetitions Area Saving

oracle 341 287 1,821 85.17%
web-misc 497 72 92 53.87%
web-cgi 456 12 4 55.11%

Entire SNORT
(53 Rule Sets) 50,621 20,154 19,194 39.43%

block can handle all four major types of constraint repetitions
that appear in regular expressions. The counter block had
the capability of being applied to any sub-RegExp and was
not suffering from overlapping conditions, making it highly
efficient for hardware implementation of SNORT IDS rules.
Furthermore, an optimized circuit for the Alternate meta-
character was presented, which can save a large amount of
hardware resources when applied to single character patterns.
Simulations results verify that our approach achieves up to
85% area savings for some of SNORT IDS RegExp rules
compared to the conventional approaches. Our approach leads
to 40% area savings for the entire SNORT IDS rule set,
without degrading the performance.

REFERENCES

[1] “Regular Expression Sample Application - User Search,”
http://www.oracle.com/technology/sample code/tech/pl sql/regexp
/usersearch/readme.html.

[2] “An Introduction to Regular Expression with VBScript,”
http://www.4guysfromrolla.com/webtech/090199-1.shtml.

[3] SNORT Network Intrusion Detection System, www.snort.org.
[4] J. Bispo, I. Sourdis, J. M. P. Cardoso and S. Vassiliadis, “Regular

Expression Matching for Reconfigurable Packet Inspection,” in
Proceedings of the IEEE International Conference on Field
Programmable Technology (FPT’06), pp. 119-126, Dec. 2006.

[5] J. E. Hopcroft and J. D. Ullman, “Introduction to Automata
Theory, Languages and Computation,” Reading, Mass.: 2nd
Edition, Addison Wesley, 2001.

[6] R. Sidhu and V. K. Prasanna, “Fast Regular Expression Match-
ing Using FPGAs,” in Proceedings of the 9th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines
(FCCM’01), pp. 227-238, Apr. 2001.

[7] C.-H. Lin, C.-T. Huang, C.-P. Jiang and S.-C. Chang, “Optimiza-
tion of Regular Expression Pattern Matching Circuits on FPGA,”
in Proceedings of the Conference on Design, Automation and
Test in Europe (DATE’06), pp. 12-17, Mar. 2006.

[8] C.-H. Lin, C.-T. Huang, C.-P. Jiang and S.-C. Chang, “Opti-
mization of Pattern Matching Circuits for Regular Expression on
FPGA,” in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 15, no. 12, pp. 1303-1310, Dec. 2007.

[9] C. R. Clark and D. E. Schimmel, “Scalable Pattern Matching
for High Speed Networks,” in Proceedings of the 12th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’04), pp. 249-257, Apr. 2004.

[10] I. Sourdis, S. Vassiliadis, J. Bispo and J. M. P. Cardoso,
“Regular Expression Matching in Reconfigurable Hardware,” in
Journal of VLSI Signal Processing, pp. 1-23, July 2007.

[11] A. C. Mihal, C. Sauer and K. Keutzer, “Designing a Sub-RISC
Multi-Gigabit Regular Expression Processor,” Technical Report,
University of California at Berkeley, no. UCB/EECS-2006-119,
Sep. 2006.

[12] R. W. Floyd, and J. D. Ullman, “The Compilation of Regular
Expressions into Integrated Circuits,” Journal of ACM, vol. 29,
no. 3, pp. 603-622, July 1982.

[13] B.L. Hutchings, R. Franklin and D. Carver, “Assisting Net-
work Intrusion Detection with Reconfigurable Hardware,” in
Proceedings of the 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’02), pp.
111-120, Sep. 2002.

[14] J. Moscola, J. Lockwood, R. P. Loui and M. Pachos, “Implemen-
tation of a Content-Scanning Module for an Internet Firewall,”
in Proceedings of the 11th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’03), pp.
31-38, Apr. 2003.

[15] Z. K. Baker, V. K. Prasanna and H.-J. Jung, “Regular Expres-
sion Software Deceleration for Intrusion Detection Systems,”
in Proceedings of the IEEE International Conference on Field
Programmable Logic and Applications (FPL’06), pp. 1-8, Aug.
2006.

[16] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley and J. Turner,
“Algorithms to Accelerate Multiple Regular Expressions Match-
ing for Deep Packet Inspection,” in Proceedings of the ACM
Special Interest Group on Data Communication Conference
(SIGCOMM’06), pp. 339-350, Sep. 2006.

[17] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman and R. H. Katz, “Fast
and Memory-Efficient Regular Expression Matching for Deep
Packet Inspection,” in Proceedings of the ACM/IEEE Symposium
on Architecture for Networking and Communications Systems
(ANCS’06), pp. 93-102, Dec. 2006.

[18] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole and
V. Hogsett, “Granidt: Towards Gigabit Rate Network Intrusion
Detection Technology,” in Proceedings of 12th International
Conference on Field Programmable Logic and Applications
(FPL’02), pp. 47-61, Sep. 2002.

[19] F. Yu, R. H. Katz and T. V. Lakshman, “Gigabit Rate Packet
Pattern-Matching Using TCAM,” in Proceedings of the 12th
IEEE International Conference on Network Protocols, pp. 174-
183, Oct. 2004.

[20] I. Sourdis and D. Pnevmatikatos, “Pre-Decoded CAMs for Effi-
cient and High-Speed NIDS Pattern Matching,” in Proceedings
of the 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM’04), pp. 258-267, Apr.
2004.

[21] J. Bispo, I. Sourdis, J. M. P. Cardoso and S. Vassiliadis,
“Synthesis of Regular Expressions Targeting FPGAs: Current
Status and Open Issues,” in Proceedings of the 3rd International
Workshop on Applied Reconfigurable Computing: Architectures,
Tools and Applications (ARC’07), pp. 179-190, March 2007.

[22] Synopsys Inc., “User Manuals for SYNOPSYS Toolset Version
2005.06,” 2005.

[23] ALTERA Corp., “User Manuals for Quartus II Version 6.0
Toolset”, 2006.

118

