
Network Processing on an SPE Core in Cell Broadband EngineTM

Yuji Kawamura,
Takeshi Yamazaki,

Tatsuya Ishiwata and Kazuyoshi Horie
Microprocessor Development Dept
Sony Computer Entertainment Inc.

Tokyo, Japan
yuji01 kawamura@hq.scei.sony.co.jp,

tyamaki@rd.scei.sony.co.jp,
{tatsuya ishiwata,kazuyoshi horie}@hq.scei.sony.co.jp

Hiroshi Kyusojin
Technology Development Group

Sony Corporation
Tokyo, Japan

kyu@sm.sony.co.jp

Abstract

Cell Broadband EngineTM is a multi-core system on a
chip and is composed of a general-purpose Power Pro-
cessing Element (PPE) and eight Synergistic Processing
Elements (SPEs). Its high computational performance is
achieved mainly through the SPE’s processing power.

New high-speed NICs such as 10-Gbps Ethernet require
significant amounts of processing power. Even the full pro-
cessing power of PPE is insufficient to attain the maximum
bandwidth on 10-Gbps Ethernet, when running Linux on
Cell Broadband EngineTM.

In order to avoid the bottlenecks of PPE processing, we
implemented a NIC driver and a protocol stack on an SPE.
We selected a small protocol stack that is designed for em-
bedded systems and made size reductions to put both a pro-
tocol stack and a NIC driver onto a single SPE. Due to the
size limitation of the SPE’s local storage (256-KB).

As a result, the protocol processing on an SPE is almost
at wire speed for UDP and about 8.5 Gbps for TCP with
lightly tuned code, and it requires no assistance from the
PPE while in the data transfer phase.

Our work shows that the use of the SPE instead of the
PPE for network processing can help resolve network per-
formance problems that can arise from handling a high-
speed NIC, including the costs of protocol processing and
memory copies.

The results indicate that our approach can lead to a suf-
ficient level of transfer rate performance.

1. Introduction

The Cell Broadband EngineTM is a multi-core system on
a chip developed by Sony, IBM and Toshiba [1] [12]. The
Cell Broadband EngineTM is composed of a Power Process-
ing Element which is a processor core with a PowerPC in-
struction set architecture and eight Synergistic Processing
Elements (SPEs). The SPEs are SIMD instruction set pro-
cessors with 256-KB of local storage (LS). An SPE differs
from conventional processors with cache hierarchies in that
it relies on a DMA engine to move code and data between
the LS and the main memory, which in turn enables explicit
data transfers between memory hierarchies. With a clock
speed of 3.2 GHz, the Cell Broadband EngineTM has a the-
oretical peak computational performance of 230.4 GFlop/s
(single-precision floating point). The SPEs provide a signif-
icant portion of the computing power in a Cell Broadband
EngineTM [10]. Therefore, the key to fully utilizing the per-
formance of the Cell Broadband EngineTM is to fully exploit
the SPEs.

Another important characteristic of the SPE is its pre-
dictability, which stems from its simple pipeline structure
and a flexible DMA engine. The SPE’s predictability en-
ables the development of finely tuned application codes that
precisely and allows control hardware mechanisms, appli-
cation programmers to achieve highly sustainable perfor-
mances with real applications [9] [5]. In addition, the sim-
plified features enable efficient implementations with high
performance-to-area ratios [11] [12].

It has become increasingly difficult to gain improve-
ments in the performance of semiconductor chips through
scaling theory. Therefore, it is increasingly important to ex-
ploit a computation engine with a good performance-to-area
ratio like the SPE.

16th IEEE Symposium on High Performance Interconnects

1550-4794/08 $25.00 © 2008 IEEE

DOI 10.1109/HOTI.2008.16

119

The goal of this work is to use SPEs to support system
infrastructure with the elements essential to computer sys-
tems, such as high-speed networks and storages.

The following characteristics make SPEs potentially su-
perior to existing solutions for high-speed device support.

• The allocation of dedicated resources for individual
devices is effective in achieving short and stable re-
sponse times [7]. Because SPEs occupy a smaller chip
area than general-purpose processor cores of equiva-
lent performance, when one whole processor core is
used as a dedicated processor, the allocation of one
SPE has less impact than that of general-purpose core.

• The use of DMA enables the scheduling of a large
number of memory access requests that are asyn-
chronous to the processor core. SPEs can access the
system memory in a more flexible and tightly sched-
uled way than general cache-based systems during
computation.

• The communication between the SPE and the device is
possible with a low overhead because the devices can
access the high-speed LS directly.

• An SPE differs from a special-purpose device such as
a network processor in that it is a general-purpose re-
source that can be used for a variety of computational
tasks. Thus SPEs can be used for different purposes
depending on the status of system usage.

However, it is necessary to split execution codes and data
for the 256-KB LS, and codes and data must be swapped
as required via explicit DMA requests. This necessitates a
different programming technique from that used in conven-
tional processors, and increases the level of technical diffi-
culty in particular when porting existing large-scale appli-
cations.

This paper provides an overview of the implementation
of network protocol stack processing in an SPE and an eval-
uation of its performance.

The standard protocol stacks incorporated in operating
systems such as Linux have large memory footprints, and
require extensive modification when they are ported to an
SPE. We prioritized design time and selected for a base a
protocol stack with a small footprint designed for an em-
bedded device.

The protocol stack NetX [2], provided by Express Logic,
and the microkernel ThreadX which is required for its oper-
ation were ported to SPE. Porting was enabled by placing a
small number of data structures (connection tables, packet
buffers, etc.) in the main memory and using DMA access.

Generally, protocol stacks use scalar code and it is diffi-
cult to use SIMD instructions to tune performance. In our
experiment, speed was increased through the adjustment of

data alignment and optimization of branching. A transfer
performance of 8.5 Gbps using TCP-IP was achieved when
a single SPE operating at 3.2 GHz was allocated exclusively
to support a 10 Gbps optical Ethernet NIC.

As indicated by Foong,et al. [8], standard TCP-IP net-
work protocol stacks require a processing power of 1
Hz/bps on a Pentium 4. At a time when 1 Gbps is stan-
dard for Ethernet NIC and the use of 10-Gbps Ethernet is
becoming more widespread, network protocol stack pro-
cessing consumes the largest CPU cycle time among the
services that support a single device.

In recent years, HPC cluster systems that use multi-core
processors have become common. On these systems the
load on the CPU assigned to protocol stack processing may
increase, and problems may arise from load unbalancing.
To prevent this, a single core at each node is frequently
assigned to dedicated network processing [6]. In the Cell
Broadband EngineTM, the use of one of the eight SPEs for
this purpose makes it possible to employ 10-Gbps Ethernet.
This represents a considerable advantage over a system us-
ing conventional high-performance processor cores.

Section 2 below considers related research in order to
clarify the positioning of the project discussed here. Sec-
tion 3 discusses the characteristics of implementation of
protocol stack processing using SPEs and the methods of
optimization, while Section 4 presents the results of perfor-
mance evaluations. Section 5 presents the conclusions of
the project, and Section 6 considers problems and future di-
rections.

2. Related Works

An SPE has an unique instruction set architecture in
which all the computational instructions are SIMD instruc-
tions. This gives the SPEs a high level of floating-point
computation performance per chip area, and they are em-
ployed in various areas of numerical computation applica-
tions [5] [14]. However, system services like the kernel
services of operating systems and IO device processing are
generally scalar tasks with complicated data structures, and
there is no publication handling this theme of poring these
types of processing to an SPE.

We ported a network protocol stack on an SPE. One SPE
was separated from processor scheduling on the Cell Linux
kernel and assigned for processing a network protocol stack.
As a result, this SPE looks like a network processor [7].

As network interfaces began to handle high packet rates
and interrupts reduced system performance. And they
become a problem [13]. To avoid performance reduc-
tion from frequent interrupts, Aron,et al. [4] proposed the
software-timer-based network processing, which can elim-
inate higher frequent interrupts from NIC with timer-based
polling. This approach’s main objectives are to limit net-

120

Table 1. RC-101 10-Gigabit Ethernet Adapter
Features Items
Hardware Vendor Sony Corporation.

Engineering samples available
MAC original

Technical Features IEEE standard IEEE802.3ae 10GBASE-SR
Wiring Multi-mode fiber (300m)
Host bus PCIe (x1, 4, 8)
Transceiver original
Power consumption 7.5W

Software Features Checksum offload IP, UDP, TCP
Jumbo frame 9k
Interrupt moderation original

work processing cycles and to eliminate context switching.
Our approach also eliminates interrupts from NIC, because
all the interactions from NIC are handled by polling on ded-
icated SPE.

Assigning dedicated resources for network processing
has multiple benefits [15] [19]. Wu,et al. [18] shows that
process scheduling by a Linux kernel may largely affect
the performance of a protocol stack. Our approach elim-
inates any interference between protocol stack processing
and other kernel tasks.

There was another challenge of controlling system-wide
performance by restricting CPU cycles for network process-
ing [16]. But our approach can completely offload network
processing from the PPE on which the operating system is
running.

From a security perspective, separating the protocol
stack from a monolithic kernel is preferable [17]. This sug-
gests that our schemes which utilizes separate resources for
protocol stacks can potentially improve system security.

3. Implementing the Network Protocol Stack in
an SPE

This section discusses the system constructed in this
project: hardware and software configurations, the func-
tions of the implemented system. It also addresses the pro-
cesses and performance improvements required to imple-
ment a protocol stack on an SPE.

3.1. System Configuration

Figure 1 shows the configuration of the hardware sys-
tem constructed for this work. We used the Sony RC-101
10-Gigabit Ethernet Adapter. This hardware is not yet com-
mercially available but it is available for evaluation. Table 1
shows the main specifications of the RC-101 10-Gigabit
Ethernet Adapter. The Cell Broadband EngineTM is con-
nected to RC-101 using a PCIe x8 interface through a pro-
totype high-performance FlexIO-PCIe bridge.

Figure 1. Hardware System

Figure 2. Connection between RC-101 and
SPE

3.2. Basic Strategies for Supporting
TCP/IP on SPE

3.2.1 Protocol stack

The standard protocol stacks incorporated in operating sys-
tems such as Linux have large memory footprints that ex-
ceed the LS size of 256-KB, and extensive modifications
are therefore necessary when they are ported to an SPE. We
prioritized design time, and used a protocol stack for em-
bedded applications, which has a small footprint, as a base.

The protocol stack NetX, manufactured by Express
Logic, and the microkernel ThreadX that is required for its
operation were ported to an SPE.

121

Figure 3. Software System Overview

3.2.2 Pinning

The linux distribution for Cell Broadband EngineTM treats
the SPEs as virtualized resources, which means that user
applications can generate more SPE threads than available
SPEs, and context switching of the SPE thread may occur
while user applications are running. However, as Figure 2
shows, we stored descriptors in the LS and attempted to op-
erate the NIC directly from the SPE, and it was therefore
necessary to pin an SPE. One SPE was pinned and used ex-
clusively for network processing.

We considered using multiple SPEs to fix the code foot-
print problem, but did not apply this method, in order to free
as many number of SPEs.

3.3. Software Module

Figure 3 shows the configuration of the software system.
The Linux 2.6.20 kernel with a patch for our evaluation
board is used. The kernel is running on the PPE.

One SPE was pinned for the SPE-side components which
are shown on the left. In the SPE, the ThreadX real-time
OS, RC-101 NIC driver, NetX TCP/IP protocol stack and
a service application are running. The service application
communicates with a user space application and executes
requests from the user space application by calling NetX
API. This SPE runs in the Linux kernel space.

The PPE-side component shown in the center (bottom) is
in charge of initializing, managing and terminating the SPE-
side components. Because there is no standard kernel API
call method from SPE to PPE in Linux, the SPE-side com-
ponents cannot directly call kernel API existing in the PPE
core. The PPE-side component is implemented as a ker-
nel module and calls various kernel API as requested by the
SPE side components, including the allocation/deallocation
of memory, obtaining an IO space address and probing the

Table 2. implemented functions
Function Support Enabled
ARP yes yes
RARP yes no
ICMP yes no
IGMP yes no
IPv4 yes yes
IPv4 checksum yes no
IPv6 no
TCP yes yes
TCP checksum yes no
TCP selective ack yes (receive only) yes
TCP slow start algorithm no
TCP fast retransmit no
TCP window scaling no
UDP yes yes
UDP checksum yes no
API NetX specific

socket like API

network adapter. The memory region shown in the center
box in Figure 3 is a kernel space memory region that is al-
located and mapped to the user space by the PPE-side com-
ponent. Communication with the user space is conducted
via ring buffers that are placed in this memory region.

3.4. Functions of Protocol Stack

The NetX is used for supporting TCP and UDP. The TCP
protocol stack implemented in Linux has a variety of ad-
vanced functions. However, NetX is designed for embed-
ded systems where code size is important. Thus, advanced
functions such as window scaling are omitted from NetX.
Table 2 shows the functions of NetX and whether they were
activated in this project. Of the functions supported by
NetX, only the essential functions were selected, in order
to prevent the code size from becoming too large.

3.5. Solving the Code Footprint Problem

We implemented the real-time OS and the protocol stack
onto an SPE, as well as a simple test program in the same
SPE. This exhausted local storage, and no margin remained
for additional functions or packet memory.

Because the registers and operands in an SPE are 128-bit,
more instructions are required to access a structure without
alignment restrictions than when a standard 32-bit RISC
processor is employed. Therefore, code sizes can easily
become large in programs like protocol stacks that access
structures frequently. In order to control the code size, we
added alignment restrictions to the main structures in the
NetX. Because we employed gcc as the compiler, we used
the directive attribute ((aligned(N))), which was devel-
oped for adding alignment restrictions. As a result, while
the data size increased, the code size was reduced. The
size of the .text segment was reduced from 145-KB to 113-
KB after the alignment, representing a reduction of approx-
imately 21%. However, the .bss segment increased approx-

122

Table 3. local store usage
Segment name .text packet pool .bss stacks .rodata .data tcp thread udp .debug ranges other total
Before 144592 49920 39328 17408 4656 1264 480 352 336 128 3680 262144
After 113168 57600 45728 17408 4720 1264 1856 1312 1072 128 17888 262144
Ratio 0.78 1.15 1.16 1.00 1.01 1.00 3.87 3.73 3.19 1.00 4.86 1.00

imately 18% in size following the alignment, from 39-KB
to 46-KB. Table 3 shows a comparison of the segment sizes
in the LS before and after alignment. “packet pool” rep-
resents the packet pool,with the section that maintains the
packet payload at an MTU of 1500 bytes and the structure
that controls the packets. The term, “stacks” refers to the
stack area, which also holds a thread context, while “tcp” is
the TCP control block, and “udp” is the UDP control block.
In the table, “total” represents the size of the LS. Overall,
the addition of alignment restrictions to the structures re-
sulted in a size reduction of approximately 5%.

Additionally, the alignment restrictions resulted in a 27%
improvement of loopback performance in the TCP and 22%
in the UDP.

3.6. Insertion of Branch Prediction to In-
crease Speed

Because SPEs do not have a branch prediction hardware,
static hint branch instructions are used to indicate the fetch
direction. However, even when branch instructions were
counted by the number of “if” statements in the C source
code, there were more than 1200. It was impractical to in-
put the gcc builtin expect code manually. Instead, we used
the gcc profile-guided optimization (PGO) to enable branch
prediction. Communication was via loopbacks from the test
program, and statistics on the direction of branching were
gathered and fed back during compiling. Using PGO, we
were able to improve TCP loopback performance by ap-
proximately 22%.

3.7. Making the System Non-preemptive to
Improve Performance

The protocol stack that we employed in this project,
NetX, is a commercial stack, and is designed for use upon
the embedded real-time OS ThreadX, which is also man-
ufactured by Express Logic. We ran NetX by porting
ThreadX to the SPE. And preventing ThreadX from being
triggered by any type of interrupt processing other than the
timer processing of the thread by SPE decrementer inter-
rupts. Interrupts of the SPE core can potentially be oper-
ated by NICs from the MFC Memory Mapped I/O (MMIO)
register, but the SPE processing speed is fast enough, and
at low load, tasks can be rescheduled in round-robin cycles
of approximately 400 nano seconds. Given this high-speed

response, polling was employed. In addition, the exclusive
use of an SPE made it unnecessary to run in coordination
with unknown non-network processes (unlike CPU cores
running a normal OS) and therefore the maximum delay
could be controlled.

ThreadX supports preemption, but we did not enable pre-
emptive processing. As indicated above, the system is in
control of the entire task processing in the SPE. Therefore
non-preemptive task processing can be conducted without
delays, and exclusion processing such as mutexes can be
eliminated, resulting in higher speeds. Eliminating mutex
processing enabled us to increase the bandwidth of loop-
back processing by approximately 13%.

3.8. Use of the SPE to Drive NIC

Because SPEs have a DMAC in every core, they are
also capable of efficient NIC register accesses. On a con-
ventinal processor core (like the PPE), the pipeline stalls
for an extremely long period in units of instruction cycles
during MMIO register access. In contrast, the DMAC in
an SPE can be explicitly controlled by software in an SPE,
enabling instructions to be issued without waiting for time-
consuming MMIO accesses to complete, and programs can
therefore continue to be executed during MMIO accesses.
For example, when sending data, the NIC is notified of the
update in the transmission descriptor, and this notification is
normally implemented by writing the NIC MMIO register.
With SPEs, a DMA transfer instruction can be issued with-
out waiting for this write to complete, and prevents from
stalling.

RC-101 uses 32-byte descriptors placed in the ring buffer
for sending and receiving. We placed the descriptors in the
LS to control RC-101. When the send descriptor is updated,
the RC-101 register is tapped and the descriptor read from
RC-101 is kicked. Packet payloads are placed either in the
LS or on main memory. When placed in the LS, the data
flow is as shown by the solid line in Figure 2. The data flow
when the packet payloads were placed on main memory is
shown by the dotted line in the same figure. In the latter
case, the payload has to be retrieved from the main memory,
doubling the load on the memory system when compared to
LS. However, because it is difficult to place multiple 9KB
payloads in the LS in order to increase the MTU, it is neces-
sary to place payloads on main memory and reduce the data
resident in the LS for high bandwidth.

123

3.9. Increasing the Number of Supported
Sessions

When all functions were handled in the LS without using
the main memory, the maximum number of connected ses-
sions that could be supported simultaneously was 16. We
increased the number of sessions in order to demonstrate
that the SPE can be used for more realistic applications. It
is difficult to increase the number of sessions because of the
packet pool capacity and the sizes of the TCP control block
(TCB) and the UDP control block (UCB). The TCB and
UCB occupy approximately 1-KB and 512-B of the LS, re-
spectively. Therefore if the TCP supports 128 sessions, for
example, half the LS capacity is used. We were able to sup-
port 128 simultaneous TCP sessions by using the techniques
described below.

• Software cache for TCB and UCB

We placed the TCB and UCB on main memory. The
protocol stack retrieves these into a small area in the
LS when required. If the TCB and UCB were modi-
fied they are restored to the main memory. These op-
erations are handled by a software in the SPE.

The TCB and UCB include the port number field
which are frequently searched. We extracted such data
into the LS and made resident for speed-up.

• Placing queues in the main memory

Because the packet pool capacity is essential to guar-
anteeing the TCP retransmit and keeping the data re-
ceiving. The data placed in the TCP queues was saved
to the main memory and the packet pool in the LS was
used as a cache area.

3.10. API for User Space Application

We implemented the following application interfaces to
enable the use of the protocol stack from Linux user space
application processes.

• Proprietary socket interface API (SOCK API)

The SOCK API provides the NetX API without requir-
ing changes in the user space application programs.
The service programs that provide these API are lo-
cated in the service application program section of the
SPE-side components shown in Figure 3. These ser-
vice programs use resources guaranteed by the PPE
kernel module, and employ a memory area shared be-
tween the user space and the kernel space to communi-
cate with user processes. In addition, by calling NetX
API, the service programs use the NetX functions to
realize TCP or UDP communication.

Figure 4. Test Environment for End to End
Communications

Figure 5. Test Environment for Loopback
Communications

• Remote Direct Memory Access protocol API (RDMA
API)

The RDMA API follows the instructions issued by
user applications, and copies data using TCP to com-
municate between remote nodes. Unique protocols
were used in TCP.

• SDP on RDMA API (SDP)

To enable the use of Infiniband SDP functions [3], we
used the library provided in the SDP through emula-
tion of the HCA driver in kernel space. This is to sup-
port applications using standard sockets.

The SOCK API and the RDMA API cannot coexist at the
same time.

4. Performance Evaluation

This section discusses the measurement environment
used in performance measurements, and the measurement

124

results.

4.1. Measurement Environment

The measurement environment of end-to-end communi-
cations is shown in Figure 4. During measurements, RC-
101 units were connected directly with an optical cable with
no switches in between. During end-to-end communica-
tions, the sender side only transmitted data and the receiver
side received data.

The measurement environment of loopback communica-
tion is shown in Figure 5. In loopback, the packets were
reproduced in the protocol stack and returned by means of
memory copies in NetX. During loopback, send and re-
ceive transmissions were executed on a single SPE using
two threads.

Performance data is measured by running the test pro-
gram shown in Figures 4 and 5 on the SPE where the SPE-
side components are running. The NetX socket API is
called directly from the test program. 10 Gigabits of data
is transferred, and the throughput which includes the IP
header and MAC header length is measured. We measured
UDP throughput by varying UDP payload size. Also, we
measured TCP throughput by varying TCP Max Segment
Size (MSS) and TCP window size.

4.2. Loopback Communications Perfor-
mance

Loopback performance measures only the performance
of the protocol stack. However, because the packets are
copied and returned when NetX is used, results are largely
affected by the additional memory copies.

4.2.1 UDP loopback

Figure 6 shows the results of the UDP loopback test. The
bandwidth reaches 7.5 Gbps when MTU is 1472 bytes.

4.2.2 TCP loopback

Figure 7 shows the results of TCP loopback communica-
tions. The bandwidth reaches 4.6 Gbps when MSS is 1460
and window size is approximately 26 KB (MSS × 18).

4.3. End-to-End Communications Perfor-
mance

Two types of data structures are used for communica-
tion between the device driver and the protocol stack. The
packet descriptor carries control information and is placed
on LS to enable low overhead polling by SPE. The other
data structure is a packet buffer. The large data structures

0

1000

2000

3000

4000

5000

6000

7000

8000

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t[

M
bp

s]

Packet Size [bytes]

Figure 6. UDP Loopback Performance

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5000 10000 15000 20000 25000 30000

T
hr

ou
gh

pu
t[

M
bp

s]

TCP Receive Window Size [bytes]

MSS 128
MSS 512
MSS1460

Figure 7. TCP Loopback Performance

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t[

M
bp

s]

Packet Size [bytes]

Figure 8. UDP End-to-End Performance (Us-
ing LS Only)

125

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1000 2000 3000 4000 5000 6000 7000 8000

T
hr

ou
gh

pu
t[

M
bp

s]

Packet Size [bytes]

Figure 9. UDP End-to-End Performance (Us-
ing the Software Cache)

0

1000

2000

3000

4000

5000

6000

0 5000 10000 15000 20000 25000 30000 35000 40000

T
hr

ou
gh

pu
t[

M
bp

s]

TCP Receive Window Size [bytes]

MSS 128
MSS 512

MSS 1460

Figure 10. TCP End-To-End Performance (Us-
ing LS Only)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10000 20000 30000 40000 50000 60000

T
hr

ou
gh

pu
t[

M
bp

s]

TCP Receive Window Size [bytes]

MSS 128
MSS 512

MSS 1460
MSS 3000
MSS 5000
MSS 7000
MSS 8960

Figure 11. TCP End-To-End Performance (Us-
ing The Software Cache)

that are accessed by the protocol stack are UCB and TCB.
We compared two ways of arranging these data structures.

• LS configuration

This configuration puts the entire packet buffer, the
UCB and the TCB on LS. This is good for data ac-
cess latency and main memory loads. And thus attains
the better packet handling rate. However, because of
the LS size limitation, we limited the MTU size to
1500 bytes. With this configuration, eight descriptors
are assigned for sending and four descriptors are as-
signed for receiving.

• Main memory configuration

This configuration uses LS as a cache memory. The
data structures that can be cached is UCB, TCB, and
packet queues. The total size of these data structures
can be larger than the LS size. Thus the MTU size and
packet pool size can be configured to be large enough.
64 descriptors for RC-101 NIC are assigned for send-
ing and 32 descriptors are for receiving.

4.3.1 UDP

This section discusses the results for UDP end-to-end com-
munications. Figures 8 and 9 show the results for UDP end-
to-end communications. The figures represent the LS con-
figuration and the main memory configuration, respectively.
As shown in Figure 9, wire speeds were almost attained for
UDP. The result of Figure 8 is not up to wire speed, because
of the limitation on MTU size and the number of descrip-
tors. In the main memory configuration, there is only one
session, so there are no cache misses for UCB. But incom-
ing packets with higher rates than the processing power are
put into the UDP receive queue. This operation causes a
main memory access and lowers the throughput.

4.3.2 TCP

This section discusses the results for TCP end-to-end com-
munications. Figures 10 and 11 show the results for TCP
end-to-end communications. The figures represents the LS
configuration and the main memory configuration, respec-
tively. The throughput of Figure 10 shows much smoother
results than Figure 11, because Figure 10 involves no main
memory accesses and has static packet processing times. In
Figure 10, the maximum throughput of 5.9 Gbps is reached
when is MSS 1460 bytes and the TCP window size is 23-
KB (MSS × 16).

In Figure 11, a higher maximum throughput of 8.5 Gbps
is reached at a 5000 bytes MSS and a 60-KB TCP win-
dow size (MSS × 12). This is because the main memory

126

configuration can utilize a larger MTU size and larger de-
scriptors than the LS configuration. But in the main mem-
ory configuration, both the sender and receiver must access
the main memory at each packet processing to maintain
transmit queue and receive queue. The overhead of these
main memory accesses resulted in limiting throughput of
the main memory configuration.

4.3.3 Maximum Packet Rate

During transfers from LS, packet processing performance
is approximately 870K [packet/sec]. During transfers from
the main memory, packet processing performance is ap-
proximately 530K [packet/sec]. These are measured in
UDP end-to-end communications.

5. Conclusion

The Cell Broadband EngineTM features eight processors
with a unique design, called SPEs, on a single chip. We im-
plemented a network protocol stack on one of these SPEs.
On this single SPE, we operated the protocol stack NetX,
developed for embedded applications, and the microkernel
ThreadX required for its operation. Both were manufac-
tured by Express Logic. In addition there are communica-
tion interfaces enabling the protocol-stack-driven SPE to be
accessed from device drivers and other processors.

The most significant characteristic of SPE architecture is
its omission of a cache hierarchy; the SPE has an LS that
is controlled via DMA. This necessitates a different form of
programming than that used for a conventional processor.
In implementing the protocol stacks, we employed software
caches for processing a number of data structures.

We optimized the implementation of the NIC device
drivers and the protocol stack in the fallowing various ways.

• Communication between the network hardware and
the processor was realized with a low overhead by
means of direct access to the LS from the NIC.

• Data alignment was adjusted to prevent performance
from declining and the code size from increasing. (The
SPE uses 128-bit load/store instructions, rather than
scalar data load/store instructions.)

• Profile-based static branching prediction was used to
support code scheduling and branch hint instruction
scheduling by the compiler.

As a result, we achieved a TCP performance of 8.5 Gbps
for 3-KB packet sizes using a single SPE operating at
3.2 GHz. This result indicates a competitive network proto-
col processing performance, considering that we employed

a processor designed for a variety of computational applica-
tions rather than a dedicated network processor, and demon-
strates the potential of the application of SPEs in this field.

6. Future Directions

With the results achieved in this work as a starting point,
the following directions can be indicated for the future de-
velopment of network processing using SPEs.

• Further optimization for SPE use

We used 32-bit scalar code, and therefore did not make
effective use of the SPE’s 128-bit SIMD data path. We
believe that there is potential for optimization in nu-
merous areas through the significant modification of
code structures. For example conditional branches can
be replaced by select bit instructions or shuffle byte
operations can be used for packet header arrangement.
Further optimization can be expected to result in im-
proved performance.

• Seamless integration in Linux kernels

Because NetX is designed for embedded applications,
it is not compatible with standard Linux protocol
stacks, and therefore cannot replace Linux protocol
stacks. Adding the required functions and integrat-
ing the protocol stack in a Linux kernel would make
it accessible from a Linux application in the same way
as a standard protocol stack. We believe that a Linux
kernel patch shared with a full TCP-IP offload using
a network processor [7] could be used to enable this
integration.

• Implementation of various types of network packet
processing

In this work, we focused on basic protocol stack pro-
cessing, but further network packet processing can be
considered for the future. Encryption-related process-
ing such as IP-SEC and DTCP over IP, packet filter-
ing, and other applications can be named as the next
targets. SPEs have shown excellent performance in
encryption and decryption processing, as typified by
AES [5]. SIMD processing can also be expected to in-
crease the speed of pattern matching processing, and
may be applicable for accelerating packet filtering.

As the next step in our work, we are developing a test
application that embeds the protocol stack discussed here.
To avoid the time required for rewriting a large-scale soft-
ware for the SPE, and to generate usable results in a short
period, we are attempting to apply the concept of web ser-
vices that employ combinations of highly independent ser-
vices. Specifically, this combines a group of major element

127

technologies and the Cell Broadband EngineTM to realize
an independent service package that can be accessed via a
network.

In addition to the network interface driven by the pro-
tocol stack discussed here, we intend to port and install a
storage device, a file system and a database engine onto the
SPE. By combining a single Cell Broadband EngineTM with
commodity parts, we will implement a media data service
package that includes media streaming on a bandwidth of
several hundred MB/s, and meta-data processing.

7. Acknowledgements

The authors would like to thank Bill Lamie and David
Lamie of Express Logic for their cooperation and for dis-
closing the NetX and ThreadX source code.

The authors also thank to Hisashi Tomita, Youichi Mizu-
tani, Masahiro Kajimoto, Yuichi Machida, Kazuyoshi Ya-
mada, Tsuyoshi Kano, Mitsuki Hinosugi of Sony Corpora-
tion for giving us the resources for evaluation with the RC-
101 10-Gigabit Ethernet Adapter and for helping in perfor-
mance tuning.

And the authors thank to Mariko Ozawa, Ken Kurihara,
Takuhito Tsujimoto and Daniel Toshio Harrel for reviewing
this paper.

Finally, the author would like to thank children of Awa-
fune Football Club for their exuberant energy.

References

[1] Cell Broadband EngineTM Home Page at Sony Computer
Entertainment Inc. http://cell.scei.co.jp/.

[2] Express Logic Home Page . http://www.rtos.com/.
[3] Openfabrics alliance home page. http://www.

openfabrics.org/.
[4] M. Aron and P. Druschel. Soft timers: efficient microsec-

ond software timer support for network processing. ACM
Transactions on Computer Systems (TOCS), 18(3):197–228,
2000.

[5] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell Broadband
Engine Architecture and its first implementation- A perfor-
mance view. IBM Journal of Research and Development,
51(5):559–572, 2007.

[6] P. Crowley, M. Fluczynski, J. Baer, and B. Bershad. Charac-
terizing processor architectures for programmable network
interfaces. Proceedings of the 14th international conference
on Supercomputing, pages 54–65, 2000.

[7] W. Feng, P. Balaji, C. Baron, L. Bhuyan, and D. Panda. Per-
formance Characterization of a 10-Gigabit Ethernet TOE.
Proceedings of the IEEE International Symposium on High-
Performance Interconnects (HotI), 2005.

[8] A. Foong, T. Huff, H. Hum, J. Patwardhan, and G. Regnier.
TCP performance re-visited. Performance Analysis of Sys-
tems and Software, 2003. ISPASS. 2003 IEEE International
Symposium on, pages 70–79, 2003.

[9] M. Gschwind. Chip multiprocessing and the cell broadband
engine. Proceedings of the 3rd conference on Computing
frontiers, pages 1–8, 2006.

[10] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. Watan-
abe, and T. Yamazaki. A novel simd architecture for the cell
heterogeneous chip-multiprocessor. Hot Chips 17, August
2005.

[11] H. Hofstee. Power efficient processor architecture and the
cell processor. High-Performance Computer Architecture,
2005. HPCA-11. 11th International Symposium on, pages
258–262, 2005.

[12] J. Kahle et al. Introduction to the Cell multiprocessor.
IBM Journal of Research and Development, 49(4):589–604,
2005.

[13] I. Kim, J. Moon, and H. Yeom. Timer-Based Interrupt Mit-
igation for High Performance Packet Processing. Proceed-
ings of 5th International Conference on High-Performance
Computing in the Asia-Pacific Region, 2001.

[14] J. Kurzak and J. Dongarra. Implementation of the Mixed-
Precision High Performance LINPACK Benchmark on the
CELL Processor Technical Report UT-CS-06-580.

[15] G. Regnier, D. Minturn, G. McAlpine, V. Saletore, and
A. Foong. ETA: Experience with an Intel Xeon Processor
as a Packet Processing Engine. 2004.

[16] K. Ryu, J. Hollingsworth, and P. Keleher. Efficient network
and I/O throttling for fine-grain cycle stealing. Proceedings
of Supercomputing01, 2001.

[17] A. Sinha, S. Sarat, and J. Shapiro. Network subsystems
reloaded: a high-performance, defensible network subsys-
tem. Proceedings of the USENIX Annual Technical Confer-
ence 2004 on USENIX Annual Technical Conference table
of contents, pages 19–19, 2004.

[18] W. Wu and M. Crawford. Potential performance bottleneck
in linux tcp. Int. J. Commun. Syst., 20(11):1263–1283, 2007.

[19] B. Wun and P. Crowley. Network I/O Acceleration in
Heterogeneous Multicore Processors. Proceedings of the
14th IEEE Symposium on High-Performance Interconnects,
pages 9–14, 2006.

128

