
A Network Fabric for Scalable Multiprocessor Systems

Nitin Godiwala Jud Leonard
SiCortex, Inc.

Three Clock Tower Place, Suite 210
Maynard, MA 01754
www.sicortex.com

Matthew Reilly

Abstract

Much of high performance technical computing has
moved from shared memory architectures to message based
cluster systems. The development and wide adoption of the
MPI parallel programming model has hastened this tran-
sition. Parallel scaling, however, is frequently limited by
the inefficient communication hardware commonly found
in commodity based clusters. This paper describes a new
communication network (the SiCortex fabric) employed in
the SiCortex SC5832 integrated cluster system. The fabric
switch and communications controller are integrated with
a single-chip multiprocessor node and provides three point-
to-point links per node chip. The resulting design provides
low latency, high bandwidth, reliable communication be-
tween the 972 nodes of the SiCortex system.

1 Introduction

The SiCortex SC5832 system comprises a cluster of 972
six-processor computing nodes connected via a high speed
parallel point-to-point network. The network (fabric) topol-
ogy is a Kautz graph which guarantees that the longest path
through the network is logarithmic in the number of net-
work nodes. In the case of the SC5832, the network diam-
eter is 6 hops, with each node connecting three input ports
and three output ports into the fabric. [1], [2], [3]

Figure 1 shows the single-chip, six-processor cluster
node. Twenty-seven cluster nodes are included in each of
the thirty-six modules in the SC5832, for a total of 972
nodes or 5,832 processors in the system. Messages are orig-
inated (via MPI SEND calls) by an application running on
one of the node’s six processors, packetized by the DMA
engine, tagged with a network routing string, and inserted
into the fabric via the DMA port on the fabric switch. The
packets may pass through a number of other nodes (up to
six in the SC5832 fabric) before arriving at the destination
where the packet is passed through the destination node’s

DMA Engine

Fabric Switch
and SERDES

Units

DDR-2
Controller

Processor/Memory
Switch

PCI Express
Controller

L1 I/D Cache

L2 Cache

CPUSix 64 bit MIPS CPUs
500 MHz, 1GF/s
double-precision
32+32 KB L1 Cache
256 KB L2 Cache
ECC

1152 pin BGA
170 sq mm
90nm

DDR-2
Controller

To/From other nodes
1.6GB/s per link 2 x 4 GB DDR-2 DIMMs

External I/O
8-lane PCI Express

L1 I/D Cache

L2 Cache

CPU

Figure 1. The SiCortex Six Processor Cluster
Node

fabric switch to its DMA engine. The DMA engine then as-
sembles the packets and delivers the message to a receiving
application that has invoked the MPI RECEIVE function.

The remainder of this paper will describe the SiCortex
fabric’s point-to-point links, switch components, and Kautz
graph topology.

2 Engineering Motivation and Context

The design of the SiCortex fabric was guided by a small
set of product requirements and features.

• The system would behave as a Linux/MPI cluster of
approximately 1000 nodes.

• The system MTTF target was on the order of 1 year.

• The entire system would fit in a single cabinet of less
than 8 m3 volume.1

1We never expressed the actual size of the cabinet so explicitly, but we
all had a notion of what constituted a “single cabinet.”

16th IEEE Symposium on High Performance Interconnects

1550-4794/08 $25.00 © 2008 IEEE

DOI 10.1109/HOTI.2008.24

137



During our initial research we found that MPI was the
clearly dominant parallel programming model for most of
our target customers. We also noticed that, while many
we talked to were enthusiastic about regular, and especially
cartesian topologies, there was little evidence for the asser-
tion that such topologies were necessary to effective com-
munication in most problem domains. In particular, the as-
sertion was frequently made that the halo exchange proper-
ties of many codes all but mandated a mesh or torus inter-
connect pattern. While halo exchanges do appear in quite
a few domains – ranging from seismic wave propagation
codes to weather forecasting – many other models had no
such physical correspondence. Even in cases where the
problem formulation seemed to map to a cartesian space,
we found that complexities of load balancing, job schedul-
ing, and hardware reconfiguration in the presence of failures
made an actual mapping of tasks to specific hardware nodes
problematic where it was not outright impractical. Finally,
we found evidence of many codes whose communication
patterns were either unpredictable (e.g. global search and
sorting) or far from nearest neighbor (e.g. three dimensional
FFT, large system solvers, Ewald sum kernels). This indi-
cated that little profit was to be had in asking the application
developer to work at problem-to-topology mapping, and so
we aimed for a network topology with minimum diameter.

Our surveys of over a dozen applications and applica-
tion kernels (including the NAS Parallel Benchmarks, sev-
eral weather codes, and one molecular modeling program)
indicated a clear bimodal distribution of message sizes. The
two dominant modes were on the order of 128 bytes and 100
kilobytes per message. The existence of the small-message
cluster mandated a communication model that minimized
the fixed overhead of message initiation and capture. This
differs greatly from the criteria that motivate interconnects
developed primarily for input/output applications.

A system with 1000 nodes and significant inter-node
bandwidth would contain an enormous number of physical
signal paths. This demanded link-level automatic retry for
messages that were corrupted in transit. Forward error cor-
rection was discarded as a mechanism: few FEC schemes
can tolerate persistent or long-lived errors that corrupt mul-
tiple symbols in a single message packet.

The cost of two-chip node would likely result in product
margins that were insufficient to attract investors or ensure
a lasting business, so the fabric switch, communication con-
troller, and the processors would be integrated on a single
die. We settled on a node chip size of approximately 1.7
cm2 and 1100 external connections, of which fewer than
500 could be used for signaling. After budgeting (in round
numbers) 120 pins for each of two DDR2 memory ports,
120 pins for an IO port (unspecified at the time, but we later
chose PCI express), this left approximately 140 pins for the

fabric communications.2 Inevitably long paths required uni-
directional and fully differential link paths; this suggested a
limit of about 35 output signals and 35 input signals. As
we were not yet read to commit all the remaining pins to
the fabric (some would be required for ancillary signals) we
chose a target of three input ports, and three output ports.
Each port was eight bits wide and included a single bit re-
verse channel for flow control.

These considerations allowed us to refine the require-
ments for the fabric:

• The fabric must guarantee in-order delivery of all
packets even in the presence of transient, but long-
lived, errors in the physical channel.

• The fabric link must be capable of operating at 2GB/s
over a path length of 180 cm that includes two high
performance connectors.

• The fabric and message hardware must support very
low latency (on the order of 1 microsecond) transfer
for small messages and high bandwidth (greater than
100MB/s) for large messages.

• The fabric should exhibit low diameter and scale to
larger configurations without changes to either the
node chip or to its module.

3 Copper Paths and a Single Global Clock

Typically, a large cluster system consists of multiple, self
contained server computer nodes. In such a system, the
communication hardware on each node has its own time-
base or reference oscillator that sets the data rate for its
outgoing bitstream. These oscillators may vary from node
to node by as much as a few hundreds parts per million
(ppm). In a large cluster, when transferring data from one
node to another, the communication interfaces at both ends
of the link must account for the differences of two oscilla-
tors to ensure reliable data transfers. Receivers compensate
for frequency differences by including elastic rate match-
ing buffers that add to the path latency between nodes. The
additional path latency is negligible when compared to the
total time through most communication hardware, but the
SiCortex communication fabric supports MPI transaction
costs in the microsecond range.

In contrast to a typical cluster system, the SC5832 sys-
tem implements a frequency locked (mesochronous) clock
architecture. The single reference oscillator simplifies the
node interface logic design and reduces node-to-node la-
tency. The additional cost of the rate matching buffers was

2The author’s reconstruction of this process is from memory. It is un-
likely that the evolution of our thoughts were as orderly as all this would
suggest, but schematically this is as accurate as we can be.

138



estimated to be greater than 50nS across a typical five hop
path. This was 20% of the total expected transport delay.

In the SC5832 system, the master clock oscillator gen-
erates a 66.66 MHz low frequency system reference clock.
Buffer amplifiers distribute the low frequency clock radi-
ally to each of the cluster’s 36 modules. Each module radi-
ally distributes copies of the clock to its 27 SiCortex node
chips. The total number of clock-distributing buffers from
the source oscillator to any node is kept small and constant
for all nodes.

Each node generates its high-frequency clocks for on-
chip functions using on-chip phase-locked loops (PLL). The
high-frequency output of each PLL is locked to the system
reference clock. Thus, each high-frequency clock in a node
is frequency locked with the corresponding high-frequency
clock in every other node, though their phase relationship
is indeterminate. The communication fabric described here
makes use of two derived clocks: the high speed receive and
transmit clocks (F-clock) at 2GHz to support a raw bit rate
of 2Gb/S per serial channel, and an S-clock at 200MHz used
to transfer parallel data between the SERDES units and the
fabric switch and for the fabric switch’s internal clock.

All of the system’s inter-node paths are contained within
a single cabinet and are purely electrical. The requirement
to keep latency, cost, and power dissipation low argued
against the available optical technologies. This presents
challenges in producing 2Gb/S data rates over paths that
may be longer than 1.5m. However, with the use of low
loss PCB materials, high quality module connectors, careful
layout, and significant pre-emphasis, signal integrity was
maintained over even the longest signal paths.

3.1 The Fabric Links

Nodes in the SiCortex system are connected via unidi-
rectional, point-to-point fabric links. Each fabric link com-
prises eight lanes of data (the data link) carried over eight
differential wire pairs, and a single lane of flow control (the
control link) traveling in the reverse direction on one differ-
ential pair.

Each fabric data path within a node chip is 64 bits (8
bytes) wide and is synchronous with the node’s 200 MHz
S-clock. Each byte of the eight byte data path is mapped
onto a separate and individual serial lane. A serializer en-
codes the parallel data into an 8B/10B serial bit stream that
embeds the transmit clock as well. The 8B/10B encoding
ensures DC balance over each lane and sufficient bit transi-
tions to allow the receiving deserializer to recover the phase
of the transmit clock.

The raw data rate over each lane is 2.0Gbits/S, providing
a fabric data rate of 1.6GBytes/S after accounting for the
8B/10B code overhead.

For each data link, there is a companion control link

flowing in the opposite direction (from data receiver to
data transmitter). This control link provides an explicit
ACK/NACK path from the receiving node, as well as con-
trol flow and virtual channel management information.

Each packet traveling on the data link carries a CRC
(cyclic redundancy check) in its last word. “Bad packets”
are rejected by the receiving node, which signals rejection
of the packet over the control link. Control packets are also
protected by a CRC word at the end of the packet. All pay-
load bits in packets on the data link and control link are
covered by the CRC. Control packets are designed so that a
corrupted control packet can be safely ignored.

The combination of the per-packet error checking and
control packet mechanisms provides per-hop retry of all
communications. The SiCortex fabric guarantees delivery
of all packets to the intended destination.3

3.2 The Data Link

Data packets comprise three components: the header, the
payload, and the trailer. The payload carries the actual con-
tent of a message and may vary in size from 2 to 18 words of
64 bits each. The 64 bit header includes the start-of-packet
marker, a 32-bit routing string, a virtual channel identifier,
the packet length, a sequence number, and a buffer iden-
tifier. The trailer carries the end-of-packet marker, a 32-bit
cyclic redundancy check, a packet type specifier, and 20 bits
of information used by DMA engine microcode.

Four fields in the header and trailer deserve special at-
tention.

Sequence Number Each packet is tagged with a sequence
number in the range 0 to 15. Packet transmission is
managed such that a sequence number is not reused
until it has been acknowledged by the receiver at the
end of the link. Packet sequence numbers are reas-
signed at each transmitter.

Buffer Identifier The buffer identifier allows the transmit-
ting node to control allocation of buffers in the receiv-
ing node.

Cyclic Redundancy Check Each packet ends with a 32 bit
CRC to identify corrupted packets at the link receiver.

Type Marker The type marker in the trailer is used pri-
marily by message handling microcode, but one type
code is reserved to mark “poisoned” packets. Because

3“Guarantees” in the presence of transient errors: All packets are deliv-
ered to the appropriate destination under normal conditions. All links are
protected against transient bit errors, either single or clustered. All RAM
storage buffers in the network path are ECC protected. Physical damage to
a path between nodes will cause failure delivery. This failure is signaled to
the operating system and handled by system and application software. The
topology of the network allows the fabric to route around a large number
of permanent link failures.

139



the CRC code is contained at the end of the packet, a
receiving node may have already forwarded the head
of a packet over the next link in the path before it finds
a CRC error. In this case, the forwarding node marks
the tail of the packet as “poisoned.” Poisoned packets
may be routed through the network or may be dropped
along the way. If a poisoned packet arrives at an end-
point, it is ignored by message handling microcode.

3.3 The Control Link

Control packets are fifteen bytes long, starting with a
start-of-packet marker, and ending with four bytes of CRC.
The rest of the packet contains error control, buffer alloca-
tion, and out-of-band signaling information.

The error control portion of the packet includes the se-
quence number of the last packet to arrive with a good CRC.
It also includes an error flag. The operation of these fields
is described below in Section III.C.

The buffer allocation fields indicate which buffers in the
receiving node are “currently” allocated to packets – that is,
unavailable for allocation by the transmitting node. The al-
location fields are a snapshot of some state in the past. They
are accurate up to the receipt of the “last good packet” in-
dicated by the error control portion of the control packet.
Thus the transmitter is responsible for remembering which
packet buffers it has allocated since it transmitted the ac-
knowledged last good packet. Because the transmitter’s pic-
ture of busy buffers is a composite of its own record of al-
locations and information from the downstream node, any
control packet can be safely dropped or ignored; the buffer
usage state in the transmitter is pessimistic.

The out-of-band signaling information provides a low
speed communication path to system maintenance software.

4 The Fabric Switch

The SiCortex node contains a four-by-four crosspoint
switch with local buffering for packets traveling through
each of the output ports, as shown in Figure 2. Each of
the fifteen crosspoint buffers XBij holds packets arriving on
port i and destined for port j. (Note that there is no XB33,
as the switch does not need to buffer transfers from the lo-
cal node to itself.) Each of the crosspoint buffers has room
for sixteen incoming packets. Typically, packets bypass the
crosspoint buffers and pass directly, with minimal delay,
from input port to output port. The crosspoint buffer en-
tries are maintained to accommodate contention for output
ports or downstream resources.

Input Port
0

From DMA
Engine

XB00 XB01 XB02 XB03

XB10 XB11 XB12 XB13

XB20 XB21 XB22 XB23

XB30 XB31 XB32

Input Port
1

Input Port
2

Output Port
0

Output Port
1

Output Port
2

To DMA 
Engine

Figure 2. The Fabric Switch

4.1 The Routing Scheme

Though the SC5832 system uses a Kautz topology for
its inter-node network, the node design is independent of
the network graph. Each node contains three output ports
to transmit packets into the network, and three input ports
to receive packets from the network. Routing decisions at
each stage in a packet’s path through the network are made
by examining the low two bits of the packet’s routing in-
structions included in the packet header. The initial routing
string is constructed by software. All packets are source
routed.

As a packet arrives on the input port of a switch, the
low two bits of the routing string are shifted off and used to
direct the message to the appropriate output port and cross-
point buffer.

4.2 Virtual Channels and Deadlock
Avoidance

The SiCortex fabric avoids topologically induced dead-
locks by routing all packets over virtual channels. [4]
The channel assignment scheme is independent of network
topology. Each node in the network is assigned a number
from 0 to N-1 where N is the number of nodes in the graph.
Each packet is assigned a starting virtual channel number
that determines which crosspoint buffer entries it may oc-
cupy. (Each virtual channel is assigned at least one entry in
each crosspoint buffer for its exclusive use.) When a mes-
sage arrives at node Y over a link from node X, and bound
for node Z, the fabric switch decrements the virtual channel
number if Y is greater than X and Y is also greater than Z.
It is easy to see that if the network diameter is D, then this
scheme requires no more than D/2 virtual channels. Since
all packets are source routed, the originating node knows
how many times the virtual channel will be decremented on

140



any given path, and can assign the packet to a virtual chan-
nel such that it arrives on channel 0 at its final destination.
Alternatively, all packets can be assigned to virtual channel
floor(D/2) at their insertion into the fabric.

It is possible for a packet to be corrupted by noise that af-
fects the virtual channel assignment. In this case, the packet
may arrive with a virtual channel assignment (VC) of 0 at
a node that needs to decrement the VC. In this case, the
packet is marked as poisoned and is ignored by the receiver.
The recovery mechanism will ensure that the packet is auto-
matically retransmitted. In the case of a corrupted VC that
is not detected by a decrement operation, the packet will
be labeled as poisoned (and perhaps even misrouted) by the
CRC logic in the receiver. Again, the recovery mechanism
will ensure a retransmission.

4.3 Errors and Recovery

The SiCortex 5832 fabric has over 26,000 differential
signal pairs, each carrying 2.0Gbits/S. Even the most care-
fully designed communications mechanism will encounter
single and multiple bit errors often enough to be significant.
For example, if all 26,244 channels had a bit error rate of
one bit in 1015, then an error will occur on some link in the
system every 20 minutes. The fabric is designed to recover
quickly and gracefully from packet corruption by ensuring
automatic detection of corruption at the end of each fabric
hop, and automatic retransmission at the link level.

As a packet arrives on a node’s input port, it is routed to
its destination and written into its assigned crosspoint buffer
entry. (If an error has corrupted the buffer entry number
in the packet header such that the corrupted number iden-
tifies an occupied buffer, the packet is not written to the
crosspoint buffer.) When the trailer of the packet arrives, its
CRC is compared with the accumulated CRC of the packet
(including the contents of the rest of the trailer).

If the CRCs match, the receiver updates its “last known
good sequence number received” to reflect the sequence
number of the incoming packet. This (or some later se-
quence number) will be sent in the next control packet back
to the transmitter. Control packets are sent out continuously.

If the CRCs do not match, the receiver sets the “error
found” bit in the subsequent control packet. All subsequent
data packets are dropped until the transmitting end of the
link acknowledges receipt of the “error found” bit by send-
ing a special short data packet. Once the receiver sees such
a packet, it clears the error found bit in subsequent control
packets, and the receiver resumes processing incoming data
packets.

The transmitter, for its part, records each outgoing packet
in a replay buffer indexed by the sequence number of the
outgoing packet. When one or more packets are acknowl-
edged by a change in the “last good sequence number”

Figure 3. A Twelve Node Kautz Graph

field in a control packet, the entries in the replay buffer
are released. When a control packet arrives with the “er-
ror found” bit set, the transmitter acknowledges the error,
and retransmits all packets in the replay buffer beginning
with the packet after the “last good sequence number.”

There are, of course, dozens of possible error scenarios.
Each is covered by the simple replay scheme. All packets
are delivered in order to their destinations, even in the pres-
ence of errors and noise.

5 The Kautz Topology

Kautz digraphs have been discussed in the mathematics
literature for almost 40 years; they have received attention
because they are among the largest known graphs of a given
degree and diameter. Figure 3 shows a twelve node Kautz
graph of degree 3. Each node drives its three outputs to three
other nodes, and receives its inputs from three other nodes.
The longest path length from one node to any other node
is 2 hops. The SC5832 expands this 12 node graph to 972
nodes, each no more than 6 hops from any other node. [2]

Unlike mesh or torus topologies, whose diameter is pro-
portional to the square or cube root of the size of the net-
work, the diameter of a Kautz graph grows as the logarithm
of its size. For networks of fewer than a hundred nodes,
the difference is not great, but with clusters growing well
above that level, logarithmic diameter becomes increasingly
important. Table 5 compares the diameter of a degree 3
Kautz graph with that of 2-D and 3-D tori for various net-
work sizes. (The first number in each column is the net-
work diameter, the second is the bisection width in number
of links.)

Furthermore, unlike hypercubes (another logarithmic
topology), the degree of a Kautz graph does not depend on

141



Topology Switch Number of Nodes
Degree 108 324 972

Kautz d=3 3 4/40 5/97 6/243
2-D Torus 4 11/10 18/18 32/31
3-D Torus 6 7/23 10/47 15/98

Table 1. Network diameters/bisection-widths
for various topologies

the size of the graph, and the base of the logarithm can be
chosen to be larger than 2: the logarithmic base is equal to
node degree. To put this in perspective: a degree 3 switch in
a Kautz graph will connect 972 nodes in a 6 hop diameter
network, where a degree 10 switch in a 1024 node hyper-
cube produces a network diameter of 10.

Finally, in comparison to fat trees, the Kautz graph has
the advantage of being a direct network (meaning that the
switch is a part of each node) so its cost per node is very
low in comparison, and (unlike a fat tree) does not increase
with network size.

As a result of the very low redundancy in routing de-
cisions, the Kautz digraph can use a significantly simpler
switch design than other topologies; to a first order, the
complexity of a switch increases with the square of the de-
gree. This has a direct impact on the cut-through latency of
the switch, multiplying the benefit of low diameter.

Furthermore, low switch degree means that larger num-
bers of pins can be dedicated to each link, improving the
available bandwidth without resorting to exotic packaging
and cabling technologies.

Given such low routing redundancy, it may be surprising
to realize that even in the face of a link or node failure, every
node in a degree d Kautz digraph has d independent routes
to every other node [9]. Moreover, a link or node failure in
a Kautz digraph increases the diameter by just 1.

An additional benefit of having multiple alternative paths
is that the system can distribute traffic to minimize the im-
pact of congestion and hot spots, without resorting to the
complexity of adaptive routing.

In applications with irregular or broadly-distributed mes-
sage traffic, communications performance is often limited
by the number of available paths through the network’s
narrowest bottleneck, called the bisection width. The best
available lower bound [5] on the bisection width of a Kautz
graph of degree d and diameter k is:

(d+ 1)dk

2k

Table 5 compares the bisection width of a degree 3 Kautz
graph, a 2-dimensional, and a 3-dimensional torus. The
Kautz graph offers significantly higher bisection width.

Figure 4. MPI Send/MPI Recv Delivered
Bandwidth: no fabric contention

This translates into better bisection bandwidth which is key
to operations like matrix transpose and global sort.

6 Operating Results

SiCortex has had systems in the field for almost a year
now. Our experience with these systems and with the engi-
neering prototypes indicates that the architecture meets our
initial reliability and robustness goals.

The fabric performance has been consistent with our ini-
tial models, though there have been a few surprises.

6.1 Send/Receive Bandwidth and La-
tency

The HPCC Random Ring Bandwidth measure for the
SC5832 is approximately 50MB. However, this character-
izes a peculiar communication pattern at a single message
size. In an effort to develop guidance for programmers,
we have measured delivered bandwidth between processors
across a range of message sizes and under conditions of
high contention and no contention at all.

The available transmit bandwidth under no contention
measures the average unidirectional message bandwidth
across randomly selected pairs of processors among the
5832 processors in the system. The measurement is taken
while all other processors are idle. Figure 6.1 shows a scat-
ter plot of measured bandwidth vs. message size. Each
point in the plot represents a trial for a randomly selected
pair and a message size.

The peak of 1.4GB/s is determined by the throughput of
the node’s DMA engine. The spread over samples at the
same message size is caused by differences in the network

142



Figure 5. MPI Send/MPI Recv Delivered
Bandwidth: high fabric contention

path length for each randomly chosen pair as it affects the
latency of rendezvous response messages.

The available transmit bandwidth under high contention
measures the average unidirectional message bandwidth
across 2500 randomly assigned pairs of processors. The
measurement is taken while all processors are exchanging
messages: the network under these conditions is as busy as
possible.

The first region of the curve, for messages ranging from
4 bytes to about 128 bytes, is entirely determined by the
round-trip delay for a single message exchange. The pay-
load for messages from 4 to 128 bytes in length fits entirely
in one fabric level packet. The bandwidth curve reflects a
constant initial overhead for message origination that is in-
dependent of message length. For message lengths from
129 to 1024, each message must be divided into multiple
packets, each carrying up to 128 bytes of payload. Again,
the round-trip time dominates, and since the cost per packet
is relatively constant, the delivered bandwidth remains con-
stant as well. As a first order approximation, all messages
using the eager mode follow a simple model:

BWeager(l) =
l

tohdd l−128
128 e

: 128 < l < 1024

The measurements are fairly consistent with a value of tohd

of about 3 µS.
The message handling protocol converts from “eager”

message delivery to a “rendezvous” discipline for messages
longer than 1024 bytes. This causes the bandwidth vs. size
curve to rise dramatically. The delivered bandwidth for a
4K message is 85MB/s, almost double the rate for 1K mes-
sages. The plateau of about 85MB/s and the sudden drop
at 128K messages to 60MB/s is caused by contention in the
network.

An intuitive argument would suggest that each processor
shares its node’s out-bound links with the other five proces-
sors on the node. Each node has three out-bound links of
2GB/s each. Accounting for overhead from the 8:10 code
and overhead bytes in each packet, the ultimate available
bandwidth out of a node is about 3 ∗ 2GB/s ∗ 0.8 ∗ 16

19 =
4GB/s. This out-bound bandwidth is divided among the
six processors, so that each share is about 670MB/s.

But the network diameter for the SC5832 is 6. The av-
erage message travels over about 5 hops. Consider a simple
model. Each active process p originates a message stream
that must at some point occupy a number of links equal to
the average path length s. At the same time, the number of
links in the system is fixed at 3·N whereN is the number of
network nodes. So the average number of message streams
contending for the same link is

C =
ps

3N

For the 5000 process experiment in Figure 6.1, C is approx-
imately 8.6. Thus the model predicts an available band-
width of about 80MB/s, a reasonable agreement with the
collected data up to about 64KB long messages.

The drop in bandwidth at 128KB messages is caused by
an optimization made in the protocol to reduce the incidence
of “hot spots” in the network. Messages longer than 128K
are split into three separate streams and sent “multi-rail”
fashion over completely independent paths. This, however,
increases the average path length s from 5 to 5.7. This
changes the subscription rate C from 8.6 to 9.7 and the
available bandwidth per processor to 70MB/s. The adverse
performance impact may not be offset by the hot spot avoid-
ance in low contention operation. We will be studying this
in the near future.

6.2 AllReduce Cost

The SC5832 MPI library, based on MPICH, imple-
ments the AllReduce collectives using an algorithm requir-
ing O(log p) message exchanges between the p processes.
The cost of the exchanges is O(l) where l is the number of
elements in the vector. Figure 6.2 shows the cost of an inte-
ger MIN operation over a range of vector sizes. We do not
yet have an explanation for the apparent “noisiness” of the
measurement for vectors shorter than 10KB.

The cost of the allreduce operation for large vectors is
fairly constant vs. communicator size from 16 to 1024 pro-
cessors. The bimodal nature of the AllReduce algorithm [6]
creates gives rise to a clear advantage for complements that
are powers-of-two. Communicator sizes of 2k, 4 ≤ k ≤ 10
result in AllReduce latencies of 120 to 138 milliseconds,
while other sizes suffer an additional 40 millisecond cost.

143



32 Processors
1024 Processors

Ti
m

e 
to

 C
om

pl
et

e 
Al

lR
ed

uc
e(

M
AX

 IN
T)

 (S
ec

on
ds

)

10 -5

10-4

10-3

10-2

10-1

Vector Size (Bytes)
100 101 102 103 104 105 106 107

AllReduce Cost vs. Vector Size

Figure 6. MPI AllReduce Execution Time vs.
Vector Size

6.3 Error Recovery

To date, we have not witnessed isolated bit errors in
SiCortex systems either in the laboratory or the field. We
have, however witnessed clustered bit errors caused by
power supply misbehavior in some early debug units.

Power is supplied to each chip in the system through a hi-
erarchical conversion network. Line current is converted to
48V (nominal) DC and distributed to each of the SC5832’s
36 modules. Local DC to DC converters on the module step
the 48V bus down to 9.7V. Point-of-load (POL) regulators
convert the 9.7V bus to the various voltages needed by the
processor cores, the IO drivers, the DRAMs, and the fabric
IO transceivers.

In the link failures we have seen, transient errors in the
POL regulator supplying current to a group of fabric drivers
would cause the affected link to loose synchronization.
Synchronization loss causes several packets in sequence to
be corrupted which triggers the automatic retry logic. Be-
cause synchronization has been lost, all retry attempts fail
until system software intervenes to resynchronize the bro-
ken link. Once synchronization has been achieved, the next
replay attempt succeeds and all packets are delivered to their
intended destination. No data is lost.

In actual operation, isolated single bit errors are so rare
that we have not observed a sufficient number to derive a
bit error rate with any degree of confidence. Our experi-
ence can only suggest that the bit error rate is very low, far
below 1 in 1018. The extremely low bit error rate is consis-
tent with (but not necessarily assured by) extremely clean
eye-patterns we have captured at the end of several repre-
sentative links.

On several occasions we have observed hard link fail-
ures, usually due to a mechanical defect in early engineer-
ing prototypes. In each case we were able to reconfigure the
Kautz graph around the failed link. In operation, we have
removed nodes from system configurations due to DIMM

failures. In these cases, too, the Kautz graph was recon-
figured around the failed node with minimal impact to the
operation of the system.

7 Conclusion

Our experience in actual operation indicate that the
Kautz topology delivers good performance relative to its
cost and complexity. We have also seen that the link and
switch architecture have held up well in the presence of
long-lived transient errors and permanent link failure. The
contention in the network due to the long average path
length was not anticipated in our earlier studies and has
been as disappointing as it was inevitable. However the
actual performance of the network under heavy load has
clearly demonstrated the utility of the fabric design, as ev-
idenced by delivered bandwidth on transpose operations
(measured > 210GB/sec for HPCC PTRANS), random ac-
cess benchmarks (> 5 GUPS, optimized), as well as more
complex applications and operations,

References

[1] M. Reilly, L. C. Stewart, J. Leonard, and D. Gin-
gold. (2006, Dec.) Sicortex technical summary.
[Online]. Available: http://www.sicortex.com/press/
sicortex-tech summary.pdf

[2] L. C. Stewart and D. Gingold. (2006, Dec.)
A new generation of cluster interconnect. [On-
line]. Available: http://www.sicortex.com/press/
sicortex-cluster interconnect.pdf

[3] B. Elspas, W. H. Kautz, and J. Turner, “Theory of cel-
lular logic networks and machines,” Stanford Research
Institute, Tech. Rep. AFCRL-68-0668, 1968.

[4] W. J. Dally and C. L. Seitz, “Deadlock-free message
routing in multiprocessor interconnection networks,”
IEEE Trans. Comput., vol. 36, no. 5, May 1987.

[5] Rolim, Tvrdik, Trdlicka, and Vrto, “Bisecting de
bruijn and kautz graphs,” DAMATH: Discrete Applied
Mathematics and Combinatorial Operations Research
and Computer Science, vol. 85, 1998. [Online].
Available: citeseer.ist.psu.edu/rolim98bisecting.html

[6] R. Thakur, R. Rabenseifner, and W. Gropp, “Opti-
mization of collective communication operations in
MPICH,” International Journal of High Performance
Computer Applications, vol. 19, no. 1, pp. 49–66, 2005.

144


