
QsNetIII an Adaptively Routed Network for High
Performance Computing

Duncan Roweth, Trevor Jones
Quadrics Limited, Bristol, United Kingdom,

Email: {duncan, trevor}@quadrics.com

Abstract—In this paper we describe QsNetIII , an adaptively
routed network for High Performance Computing (HPC) appli-
cations. We detail the structure of the network, the evolution
of our adaptive routing algorithms from previous generations of
network and new applications of these techniques. We describe
other HPC specific features including hardware support for
barrier and broadcast and large numbers small packets. We also
describe the implementation of the network.

I. INTRODUCTION

QsNetIII is the third generation of Quadrics High Perfor-

mance Computing (HPC) network, its design builds on that of

earlier Quadrics and Meiko products [2], [3], [6]. QsNetIII is

a multi-stage switch network, also know as a “folded-Clos

network” [19] or “fat tree” [18]. Nodes are connected via

network adapters to the first stage of crosspoint routers.

Routers are connected together via additional stages. Each

additional stage allows a larger larger number of nodes to be

connected, the number being determined by the radix of the

router and the balance of links up and down. QsNet networks

are constant bisection bandwidth, in that each stage has equal

numbers of links down towards the nodes and up to additional

stages (see figure 1).

In a fat tree network any destination can be reached from

any top stage switch, so the routing decision amounts to selec-

tion of a top switch. Early work on the use of these networks

for massively parallel systems [20] demonstrated that they

were capable of supporting pair-wise communication without

contention, provided the traffic pattern was known in advance

and an appropriate set of routing tables was constructed. This

type of source routing formed the basis of our first designs in

1994 [6], data packets were steered between nodes using pre-

computed routes supplied by the adapters. A process could

select one of four routes to use in transmitting data. This

choice could be made deterministically, “static” routing, or at

random, “oblivious” or “dispersive” routing. This mechanism

allowed an application to use default routes provided by the

operating system or its own optimised routes. Much the same

approach is used by Myrinet today [21]. Commodity networks

such as Ethernet and Infiniband use static routing schemes with

route tables held in the switches; loading application specific

routes is rare.

This paper is structured as follows. In section II we describe

experience from previous generations of network and its

influence on the QsNetIII design. In section III we describe the

use of adaptive routing in QsNetIII . In section IV we describe

hardware support for HPC specific features such as barrier

and broadcast. In section V we discuss the implementation. In

section VI we compare QsNetIII to other HPC networks. We

conclude with comments on the direction of future work.

II. BACKGROUND

Our experience and that of our customers’ previous gener-

ations of networks is that static or oblivious routing routing

worked reasonably well for simple communications patterns

that persisted over the runtime of the application. For exam-

ple, when mesh based data was distributed over processes,

the communications patterns associated with shifts in each

dimension of a grid are non-contending. However, for complex

but regular communication patterns, such as all-reduce or all-

to-all, or for irregular communication patterns the behaviour

of statically routed networks scaled badly with network size.

The same problems are evident today in both Ethernet and

Infiniband, performance on all-to-all scales badly with system

size [8] and optimisations to the routing tables provide only

modest benefit.

In 2000 Quadrics introduced QsNet [2], [4], [22], the first

multi-stage switch network to perform packet by packet adap-

tive routing. Switches made dynamic routing decisions based

on link state. QsNet was used widely in first AlphaServer SC

systems including ASCI-Q [10], [20] and then large Linux

clusters, notably those at Lawrence Livermore National Lab

(LLNL) [5]. It demonstrated scalable performance on complex

communication patterns to 1000+ nodes. The design was

refined in 2004 with the introduction of QsNetII . LLNL report

that it achieves in excess of 85% of host adapter bandwidth

on all-to-all or bisection bandwidth tests running on 1000+

node systems [5]. Their QsNetII system, Thunder, has only

55% of the point-to-point bandwidth of their newer Infiniband

system, Atlas1 but when 1024 nodes all use the network at the

same time the average bandwidth seen by each process is 40%

higher on Thunder [12]. The worst case bandwidth, critical to

many tightly coupled parallel applications, is reported to be

2.6 times better on Thunder.

III. ADAPTIVE ROUTING IN QSNETIII

The QsNetIII design follows that of its predecessors in that

the core components are a network adapter Elan5 and a

crosspoint router Elite5. Details of the adapter design can be

found in [23]. In this paper we focus on the network.

1Atlas has a PCI-Express host interface, Thunder uses PCI-X.

16th IEEE Symposium on High Performance Interconnects

1550-4794/08 $25.00 © 2008 IEEE

DOI 10.1109/HOTI.2008.31

157

100 101 102 103 110 111 112 113 120 121 122 123 130 131 132 133

200 201 202 203 210 211 212 213 220 221 222 223 230 231 232 233

300 301 302 303 310 311 312 313 320 321 322 323 330 331 332 333

Fig. 1. Three stage switch network of radix 8. QsNetII uses this design to implement its node switch, with 64 links down to the nodes and 64 links up to
an additional staget of switches. The QsNetIII design takes the same approach with higher radix routers.

With the introduction of QsNetIII Quadrics has increased the

radix of our routers from 8 to 32, allowing larger networks to

be constructed from fewer stages of switch. For example a

2048 node network has 3 stages instead of 5. QsNetIII links

are bi-directional, so all top switch links can connect down,

a network of n stages supports up to 32 × 16n−1 nodes. The

use of high radix routers reduces the number of components

required to build the network, and hence its cost and the

number of routing decisions required. We have also developed

the adaptive routing algorithms. A router can adaptively select

from arbitrary sets of links. The decision on which link to

use is made based on link state and loading. Each output

link has 32 virtual channels each of which can be waiting

on an acknowledgment. The number of pending acknowledg-

ments feeds into the routing decision, allowing us to select a

route from the subset of lightly loaded links. We have also

implemented a variety of selection methods to allow us to

experiment with different routing strategies.

Before looking at wider uses of adaptive routing it is

important to consider the communication model. QsNet is

fundamentally a memory based communication device, not a

stream device. Every packet carries with it the virtual address

of a data object. This is either the memory address to write data

to (put) or read data from (get) or it is the address of a queue

in the network adapter allowing us to optimise support for

operations where the destination address is not known by the

sender. QsNet adapters are virtual memory devices with their

own MMU [3] facilitating direct one sided communication.

Consider first a simple put

void *put(char *src, char* dest,
size_t size, int rank)

Were src is source virtual address in the local process

initiating the put and dest is the destination virtual address

in the remote process identified by its rank. The put call

transfers size bytes. It returns an opaque handle that can be

tested later for completion.

If the amount of data being transferred is small it will

be contained within a single packet, larger transfers will be

broken into multiple packets by the sending adapter. The

initiating process needs to know that the whole transfer is

complete but the order in which the data is delivered is

arbitrary. Similar ordering rules apply for MPI. Messages

between a pair of processes must arrive in the same order

as they are sent, but there is no requirement for bulk of the

data to be delivered in byte order.

A large transfer will be split into many packets, which could

all take different routes to the destination. They may also be

replayed as a result of contention or errors. The important

step, that must only be executed once, is the final one in

which both sides determine that the operation has completed.

QsNetIII distinguishes these cases, using a light weight pro-

tocol for bulk data transfer and a slightly more expensive

sequence number based protocol for atomic operations.

With this approach we are free to stripe packets over

multiple links (Elan5 has two, future adapters will have more),

increasing bandwidth. When an error occurs2 the network

returns a NACK (not acknowledgment) to the sending adapter

and it retransmits, a different route may be selected. With

our model there is no requirement to wait for one packet to

complete before another can be sent and no requirement to

buffer packets at the destination so that data can be delivered

in byte order.

On receipt of a put request the network adapter translates

the user rank to a physical destination (QsNet virtualises

2With a link speed of 25Gbps in each direction, 2 links and a bit-error-rate
of 10−15 we would expect to see an error once every second on a 2048 node
network

158

10 11 12 13

20 21 22 23

X

Fig. 2. Adaptive routing around a broken link. Traffic between router 10
and router 11 is automatically routed around the broken link between router
10 and router 20.

all addresses and destinations seen by the application) and

generates packets which the network delivers, returning ACKs

or NACKs. On receipt of a NACK the packet is automatically

retransmitted. On the destination side data is written to user

memory without intervention, there are no interrupts (provided

the page is mapped) and no need for a cooperating remote

process. This approach maps directly into PGAS programming

models such as Shmem [14], ARMCI [15], UPC [16] and

CoArray Fortran [17]. Where the destination address is not

known, for example in MPI message passing [13], message

headers are written to a hardware queue at a known address.

Once a send and a receive have been matched the destination

address is known and a DMA can be used to transfer the bulk

data.

In common with previous generations of QsNet our primary

use of adaptive routing is in selection of a top switch. In figure

1 router 200 is free to select from the links connecting it to

routers 300, 310, 320 or 330. The decision on which link to use

proceeds as follows: First we select a subset of lightly loaded

links based on link activity and a configurable threshold of

the number of pending operations. Then we select from this

subset on a “first free”, “next free” or random basis. The time

to route a packet across an Elite5 is less than 40 nanoseconds3.

This compares with 200 to 250 nanoseconds for other devices.

Our second example of adaptive routing is in the case of

failed links (see figure 2). This is an important case for large

production systems that need to run on in the presence of

errors. If the link between routers 10 and 20 is broken, router

10 can select alternate paths via routers 21, 22 or 23 on a

packet by packet basis, spreading the additional load over

them. Traffic to 10 from 11, 12, or 13 might be routed via

20, giving it no means of reaching 10. In this event router 20

will generate a NACK and the source will retransmit. Router

3The time to cross an Elite5 is slightly higher than on QsNetII as we have
SerDes (Serializer / Deserializer) devices driving each link on the new product;
the increased latency through a switch is more than compensated for by the
reduced number of stages

Elite5 router

300 301 302 303

200 210

B C A

Fig. 3. Adaptive routing within the top switch of a 512-way network. A
single router provides 4 top switches. Traffic from 300 can be routed via 301,
302 or 303 if the path to 200 is busy.

20 will also generate an invalid destination trap. This trap

and that generated by the failure of the link are caught by

the management system. If the link is restored quickly it need

take no action, but if the fault persists it can either reset router

20’s links (so that no traffic flows this way) or update the

routing tables on routers 11, 12 and 13 so that they don’t

use router 20 to reach the destinations connected to switch

10. On QsNetII we were restricted to the first technique. On

QsNetIII we can use either approach and the higher radix of

the routers reduces the impact of the fault. The same can be

achieved using oblivious or dispersive routing provided the

adapters know to avoid the broken link. Static routing schemes

perform badly in the presence of failures, with one of the links

typically having to carry twice as much traffic. Our approach

is simple and has proven to be highly effective.

QsNetIII provides two other opportunities for adaptive rout-

ing, within the top switches and on the final link to the

destination node.

Where the required top switch size is less than that of

an Elite5 router (for example a 1024 nodes requires a radix

8 switch at the top stage) each router can provide multiple

top switches. This provides a further opportunity for adaptive

routing; the top switches that share a router each provide an

equivalent route down. The choice of which link to use can

be made according to their load.

In figure 3 traffic from A to B takes the link in to top switch

300. If the link from 300 to 200 is busy with traffic to C then

adaptive routing allows us to select alternate paths via 301,

302 or 303 as all four top switches are provided by the same

Elite5 router.

QsNetIII has a final opportunity for adaptive routing, on the

159

Node

ElanElan

100

Node

ElanElan

100 110 120 130

300

Fig. 4. Adaptive routing over the links in to a node. Two cases. In the first
(left hand side) all links are connected to the same router. In the second (right
hand side) the links from one node are connected to different routers.

link from the network to the destination adapter (or adapters).

Where there are multiple routes in to a node the choice of

which to use can be made based upon load. This allows us

to reduce end-point contention by selecting a free or lightly

loaded inputer.

In the simplest example two or more links in to an adapter

(or a node if it has multiple adapters) are connected to the

same router. The routing decision is made on the final link.

However, where a node has multiple paths to the network

we may want to connect them to different physical switches

so as to improve the resilience of the system. The adaptive

routing decision must then be made higher in the network.

In figure 4 we consider two cases. In the first a node with

two adapters each with two links is connected to 4 ports on

the same switch and the adaptive routing decision is made

by router 100 for traffic to this node. This is good from the

point of view of minimising contention, but not optimal from

a resilience standpoint. If the links are connected to 4 routers

(100, 110, 120 and 130) in different switch chassis’, then the

we protect ourselves from cable, line card or switch chassis

failure and the adaptive routing decision is made by a router

in stage 3.

IV. HPC SPECIFIC FEATURES OF QSNETIII

QsNetIII has a number of other HPC specific features includ-

ing hardware, support for barrier and broadcast and optimised

support for small packets.

A. Barrier & Broadcast

QsNetIII provides hardware barrier and broadcast support

in the network, an important feature for HPC applications

in which the performance of collective operations controls

scalability. On receipt of a broadcast packet a switch looks up

the broadcast group identifier (which replaces the destination

rank) and transmits the packet on all links associated with

the broadcast group. Broadcast routes are set up such that

packets are first sent up the network to a router high enough

to span the range of destination nodes and then down the

tree to these nodes. This process continues until the packets

arrive at the adapters where they are acknowledged in the

normal way. The switches recombine the acknowledgments,

sending an ACK or NACK back towards the source when it has

received a reply from each link associated with the broadcast

group. A single acknowledgment is returned to the source.

This approach allows data to be sent to all nodes in much the

same time as it can be sent to any one. The network loading

is high, but significantly less than that required to implement

a conventional store and forward broadcast.

The QsNetII broadcast mechanism [1], [11] supported selec-

tion of a contiguous range of destination nodes. This approach

worked well when a system was running a small number of

large jobs, but less so when there were many jobs and the

scheduler was not able to allocate contiguous ranges of nodes.

In QsNetIII we have enhanced the broadcast mechanism to

allow the selection of an arbitrary subset of output links at

each stage.

Note that the destination virtual address for all processes in

a broadcast is the same. Where destination addresses cannot

be guaranteed to be symmetric (MPI is a case in point) data

is broadcast to a buffer allocated by the library and copied

out to the user buffer. The same approach is used for multi-

core nodes running multiple processes per node, with the Elan

library allocating buffers in shared memory. Large broadcasts

are pipelined so as to overlap the network broadcasts and the

subsequent local copies.

A broadcast packet consists of a write transaction, a destina-

tion virtual address and data. Support for barriers is provided

through network conditionals consisting of a read transaction,

a destination virtual address and a word of data. On receipt

of a network conditional the adapter reads the contents of

the specified address (held in adapter memory for speed) and

compares its value with that in the packet. If the two match

an ACK is generated, otherwise a NACK. With this primitive

in place a barrier occurs as follows: as each process enters

the barrier it updates a sequence number and writes the new

value to the barrier ready word. All processes except the

root then poll on the done word. The root process uses a

network conditional to check that all processes have entered

the barrier, retrying until it receives an ACK. It then uses

broadcast to set the done word. Simple extensions to this

mechanism allow for non-blocking barriers and constructs

of the form wait until every process has reached sequence
number n. Polled barriers of this type are appropriate when

all processes are expected to be ready at the same time. An

alternate approach is to build a tree amongst the adapters,

initialising a counted event and a thread in each. As each

process enters the barrier it increments the event counter, as

does the arrival of a message from its children. When the

count reaches one plus the number of children the thread is

160

scheduled and its sends a message up the tree. These messages

arrive at the root adapter when all processes have joined the

barrier. The root broadcasts back the done word as above.

This technique is appropriate when processes are expected to

enter a barrier a widely varying times. This approach can be

extended to perform reduction operations on data supplied by

each process [7]. Both algorithms are progressed in the adapter

and the root node. Neither require all processes to be scheduled

in order to progress and as such scale well on large systems

[10].

B. Small Packet Support

One of the most demanding challenges for HPC networks is

to sustain a high proportion of link bandwidth on small pack-

ets. QsNetIII small packet support includes both the adapters,

the switches, and the links between them. The adapters have

multiple packet engines, each capable of generating network

packets (see [23] for details). Each adapter can have up to 32

packets outstanding on each link at any point in time, increased

from two on QsNetII . QsNetIII switches support 32 virtual

channels per link, an acknowledgment can be outstanding on

each one. This provides for good overlap of data packets and

acknowledgments and hence improved link utilisation.

QsNetIII supports a variable packet size, of up to 4K bytes.

We expect to use a packet size of 1K in most systems. Packets

are split into 256 byte segments. Each segment begins with

either an 8-byte header followed by up to 248 bytes of data

or a 4-byte continuation and up to 252 bytes of data. The

segment header contains a virtual channel number, length,

destination, priority, a timestamp and a 16-bit CRC calculated

on the header. The adapter adds a 32-bit CRC calculated over

the payload and a packet id to end of each packet (8 bytes

more). For a small put the payload consists of a 64-bit virtual

address and the data to be written (32 or 64 bits), 32 bytes in

total.

Each Elite5 link has a 256 byte input buffer per virtual

channel and a dynamically assigned pool of 16 such buffers,

8K bytes in total. This buffering allows small high priority

packets to overtake on 256 byte segment boundaries. This

mechanism reduces the impact of large transfers (filesystem

traffic for example) on small puts or gets sharing the same

link.

The DMA engine splits a large transfer into multiple pack-

ets, issuing each one as data arrives from the sending host. A

1K packet will take 40-200ns to traverse the network (32-2048

nodes) and 300-400ns to write to memory at the destination.

An ACK can be returned as soon as the data has arrived or

when the write to memory is complete. We issue ACKs early

on all packets except the last in order to maximise bandwidth.

We expect to sustain full line rate using 2 or 3 virtual channels

per link. As the packet size decreases the number of pending

operations required to saturate the link will increase. For small

transfers the rate at which the host can update partial cache

lines is likely to be the limit on performance.

V. IMPLEMENTATION

Elan5 and Elite5 are implemented using an 90 nanometer

LSI/TSMC G90 process. They are semi-custom ASICs with

500MHz and 312 MHz system clocks respectively. Both

devices use a high performance BGA package, Elan5 with 672

pins, Elite5 with 982. Maximum power consumption of Elan5

is 17W and that of Elite is 18W. QsNetIII links comprise 4

lanes (transmit/receive pairs) operating at 6.25GHz (25 Gbit/s

in each direction). Link encoding is 8b10b. QsNetIII links sup-

port either Quadrics memory protocols or 10 Gbit/s Ethernet,

10GBase-CX4.

QsNetIII networks of up to 128 nodes are constructed from

a single switch chassis. Larger “federated” networks are con-

structed from a two stage hierarchy of 256-port switches. Each

“node” switch provides links down to the nodes and links up

to a second stage of “top” switches that connect the node

switches together. The general rule for construction of these

networks is that N×M -way node switches must be connected

by M × N -way top switches. With one adapter in each node

and one link per adapter this network connects M ×N nodes.

For QsNetIII M is 128 and the radix of the top switch controls

the number of ports, maximum network size is 128 × N
ports4. For a constant bandwidth network 128 top switches

are required. Each chassis provides multiple top switches, the

number of chassis required depends on the radix of the top

switch as shown in table I. Where full bisection bandwidth is

not required the number of top switches can be reduced.

Physical constraints on PCB and chassis designs have led

us to a design in which the switch chassis houses up to 16

cards. A single slot card has 16 front panel links with QSFP

connectors and 16 links to the backplane. This configuration

is used for the node switch, a two stage design, with 8 cards in

the lower stage providing 128 links down to the nodes, 8 cards

in the upper stage providing 128 links up to the top switches

and a backplane that connects the two groups of cards together.

Top switches (of radix up to 32) are built using a card with

all 32 links taken to the front panel; the QSFP connectors are

mounted above and below the PCB. This card occupies two

slots. The switch chassis houses 8 such cards.

Other chassis designs are possible, but this approach, com-

bined with the decision to use QSFP connectors throughout

allows us to construct networks of between 16 and 16384

nodes with the minimum of components, a single chassis,

backplane and a choice of two switch cards. Figure 5 illustrates

the construction of a 1024-way network. The numbers of

components required to provide networks of a given size are

summarized in table I.

Note that the top switch radix does not need to be a power

of 2. For example, a single Elite5 router can provide 6 ×
5-way or 3 × 10-way top switches, reducing the number of

components required to build non power of two networks, e.g.

640 or 1280-way.

4The implementation is the same as that for QsNetII except that each the
number of ports per switch chassis has increased from 128 to 256.

161

8 node switches connecting 1024 nodes

32 QSFP
cables

128 8-way top
switches in 4 chassis

Fig. 5. Construction of a 1024-way QsNetIII network using 8 node switches and 128 × 8-way top switches, housed in 4 top switch chassis.

TABLE I
NETWORK SIZES AND COMPONENT COUNTS

Nodes Node Switch Cables Top Switch

Chassis Chassis

128 1 128 0

256 2 384 0

512 4 1024 2

640 5 1280 3

1024 8 2048 4

2048 16 4096 8

4096 32 8192 16

8192 64 16384 64

16384 128 32576 128

The choice of QSFP connectors for QsNetIII allows copper,

active copper or optical cables to be used interchangeably. The

choice of cable type can be made on grounds of length, bit-

error-rate and cost. We might, for example use short copper

cables on links between the nodes and the node switches and

longer optical links on the links between the switches.

In a multi-rail system the network is replicated. Two net-

works can be connected to one adapter in each node (using

both links) or to two different adapters. The performance

of the host interface and the requirements of the application

(bandwidth or issue rate) will determine which configuration

is more appropriate.

A single top switch chassis provides 8 × 32-way top

switches for a system with up to 4096 nodes. Larger networks

can be constructed, up to 16384 nodes, using the node switch

design to provide 64-way or 128-way top switches. These 4

stage configurations require equal numbers of node switch and

top switch chassis (see table I). However, it is more likely

that systems of this size will be constructed by integrating

switches with the nodes, in a blade chassis for example. A

2048-way network can be constructed by connecting 128 ×
16-way node switches, one in each blade chassis, with 16 ×
128-way top switches. This approach has the advantage of

reducing the number of cables required to build a constant

bisection bandwidth network to one per node. With a larger

switch chassis, 1024-way for example, this approach can be

extended to system of 16384 blade servers.

QsNetIII components synchronise to a common clock dis-

tributed over the links. The regular structure of the network

makes computing a spanning tree straightforward; the lowest

numbered powered up switch in the highest stage is used. In

the initial version of the firmware hardware broadcasts use the

clock tree5; both functions move to a new top switch in the

event of failure.

QsNetIII switches are managed out-of-band. Each switch

chassis has a pair of embedded controllers. Each switch card

has an embedded Freescale CPU managing one or more Elites.

Switch cards are connected to the controllers via Ethernet.

The controllers use I2C to monitor power supplies, fans and

temperature. Switches chassis are connected together and to

the system’s management network via external Gbit Ethernet

interfaces on each controller. Controllers and embedded CPUs

run UBoot and a cut down Linux distribution.

A subset of management functions are common to

QsNetIII and our 10 Gbit/s Ethernet switches; system respon-

siveness, environmental monitoring, link status, link error

monitoring etc. Other functionality including clock tree deter-

mination, link connectivity checking and routing table setup

is QsNetIII specific.

In QsNetII systems links are used as soon as they are

5We plan to experiment with a more sophisticated routing scheme in which
broadcasts and barriers occur on multiple trees but this is not supported in
the current firmware.

162

connected, however they are connected. This approach is con-

venient, but not in tune with the requirements of maintaining

a large production network in which links are brought in and

out of use while the system is running6. On QsNetIII we use a

three step link bring up process. First, we negotiate link layer

connectivity, speed and protocol (CX4 or QsNet). Second we

check that the link is connected to the right place, and third

we test the link’s ability to transfer data reliably. Elite5 has the

ability to generate pseudo random packets at full line rate. We

use this in the third step of link bring up. Each Elite sends and

receives packets on the newly connected link. The embedded

controller monitors the data rate and number of errors. If all

three steps of the link bring up process complete successfully

the link is added to the route tables. This approach to system

maintenance and diagnostics removes the need to run tests on

the nodes that interfere with the machine’s workload.

If a link is disconnected, or if the error rate is unacceptably

high, it is removed from the routing tables. Low rates of

errors are tolerated within the network where there are multiple

redundant routes. Relatively high error rates are tolerated

on single links to the nodes as disconnecting them would

disconnect the node. The adaptive routing hardware in each

switch automatically avoids disconnected links.

VI. COMPARISON WITH OTHER NETWORKS

QsNetIII is designed for high end HPC users with com-

munication intensive applications using most or all of a

large machine for a single job. QsNetIII has faster links that

QsNetII 25Gbit/s in each direction rather than 9Gbit/s total.

QsNetIII has increased radix routers, halving the number of

switches required to build a system. QsNetIII uses commodity

connectors and cables, increasing the choice of components

that can be used and reducing their cost. QsNetIII provides

enhanced support for small packets, increasing the number of

multi-core commodity nodes that can be used to execute a job

efficiently.

The principle difference between QsNetIII and networks

such as Infiniband, Ethernet or Myrinet is in the use of packet-

by-packet adaptive routing. Our approach allows the hardware

to dynamically find the free paths in a multi-stage network.

Point-to-point bandwidths are similar. The structure of the

QsNetIII network ensures that point-to-point bandwidths can

be sustained when large numbers of nodes use the network

at the same time, even for non-local communication patterns.

QsNetIII latencies are lower (as are those for QsNetII) both in

the adapter and the routers. QsNetIII also provides hardware

support for barrier, broadcast and offloaded collectives, essen-

tial features of a large HPC network provided only QsNet and

the IBM Blue Gene network [25].

6A large federated network has two sets of cables. In general short cables
are used between the nodes and the node switches and longer cables between
the node and top switches. Installation and maintenance operations on the
nodes and their link cables are straightforward. Installation and replacement
of switch cards and the cables between the switches can result in mis-cabling.
On QsNetII systems the process of determining connectivity is manual. On
QsNetIII it is an automatic part of link bring up.

VII. FUTURE WORK

Our current work is focused on delivery of the first large

QsNetIII systems. These machines use a common set of com-

ponents described above. With this work complete we will

introduce a low cost entry level switch and a single chassis

high port count switch.

On QsNetII we introduced a number of optimised collectives

[7], [24] in which execution was offloaded to the network

adapter. We will develop this to provide a general framework

for non-blocking offloaded collectives on QsNetIII .

QsNetII and QsNetIII support multi-rail systems, in which

multiple links from the same node connect to distinct net-

works. We will also implement multi-port QsNetIII systems

in which multiple links from the same node connect to a

single network. This technique allows us to be more flexible in

matching the communications resources of a node to its other

characteristics, For example a large memory, high CPU count

node might have 2 or 4 connections to the same network as a

large number of commodity nodes with one connection each.

The use of standard link formats allows QsNetIII adapters to

implement other network protocols, notably 10Gbit/s Ethernet.

We are developing firmware and drivers for this aspect of the

product, broadening its applicability.

VIII. CONCLUSION

QsNetIII provides a high performance data network for the

most demanding HPC applications. We have increased link

speeds significantly from QsNetII and have enhanced both

adapter and switch functionality. The use of high radix routers

reduces the number of components required to build a network

and hence its cost and the complexity of routing data across

it. The use of packet-by-packet adaptive routing underwrites

scalability of complex communications patterns on large num-

bers of nodes. Features such as hardware barrier and broadcast

enhance the applicability to high end HPC applications.

ACKNOWLEDGMENT

The authors would like to thank Jon Beecroft, David Hew-

son and Moray McLaren for their invaluable contributions to

the design of QsNetIII . We would also like to thank Dan

Kidger for proof reading this paper.

REFERENCES

[1] Fabrizio Petrini, Salvador Coll, Eitan Frachtenberg and Adolfy Hoisie,
Hardware - and Software Based Collective Communication on the
Quadrics Network, in Proceedings of the 2001 IEEE International Sympo-
sium on Network Computing and Applications (NCA 2001) Cambridge,
Mass, October 8-10, 2001.

[2] David Addison, Jon Beecroft, David Hewson, Moray McLaren and
Fabrizio Petrini, Quadrics QsNetII : A network for Supercomputing Ap-
plications, in Hot Chips 15, Stanford University, CA, August 2003

[3] Jon Beecroft, David Addison, David Hewson, Moray McLaren, Duncan
Roweth, Fabrizio Petrini and Jarek Nieplocha, QsNetII: Defining High-
Performance Network Design, IEEE micro July/August 2005, vol 25, No.
4 pg 34-47

[4] Y. Aydogan, C. B. Stunkel, C. Aykanat, and B. Abali, Adaptive source
routing in multistage interconnection networks, in IPPS ’96: Proceedings
of the 10th International Parallel Processing Symposium, pg 258-267,
Honolulu, HW, 1996. IEEE Computer Society.

163

[5] Ryan L. Braby, Jim E. Garlick, and Robin J. Goldstone, Achieving order
through CHAOS: the LLNL HPC Linux Cluster Experience, available from
http://computing.llnl.gov/linux/publications.html

[6] Jon Beecroft, Mark Homewood, Moray McLaren Meiko CS-2 inter-
connect Elan-Elite design, Parallel Computing Volume 20, Issue 10-11
(November 1994)

[7] Duncan Roweth and Ashley Pittman Optimised Global Reduction on
QsNetII , Hot Interconnects 2005: 23-28.

[8] Eitan Zahavi, Gregory Johnson, Darren J. Kerbyson, Michael Lang,
Optimized Infiniband Fat-tree Routing for Shift All-to-All Communication
Pattern, in Proceedings of the International Supercomputing Conference
(ISC07), Dresden, Germany, June 2007.

[9] Maria E. Gomez, Jose Flich, Antonio Robles, Pedro Lopez, Jose Duato,
Evaluation of Routing Algorithms for Infiniband Networks (Research Note),
Proceedings of the 8th International Euro-Par Conference on Parallel
Processing Publisher Springer-Verlag London, UK ISBN:3-540-44049-6,
2002 pg 775 - 780,

[10] F. Petrini, J. Fernandez, E. Frachtenberg, and S. Coll, Scalable collective
communication on the ASCI Q machine, in Hot Interconnects 12, Aug.
2003.

[11] Quadrics Ltd Elan Programming Manual and other documentation.
Available from http://www.quadrics.com/documentation.

[12] Matt Leininger, Mark Seager, OpenFabrics Developers Workshop,
Sonoma, CA, April 30 2007.

[13] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker and Jack
Dongarra, MPI: The Complete Reference. The MIT Press, 1998, Volume
1, The MPI Core, The MIT Press, Cambridge, Massachusetts, 2nd edition,
September 1998 ISBN0-262-69215-5.

[14] Cray Inc Cray Man Page Collection: Shared Memory Access (SHMEM),
available from the Cray http://website www.cray.com/craydoc.

[15] J. Nieplocha and J. Ju, ARMCI: A Portable Aggregate Re-
mote Memory Copy Interface, October 30, 2000, available from
http://www.emsl.pnl.gov:2080/docs/parsoft/armci/armci1-1.pdf

[16] UPC Consortium, UPC Language Specifications, v1.2, Lawrence Berke-
ley National Lab Tech Report LBNL-59208, 2005.

[17] Numrich and Reid, Co-Array Fortran for Parallel Programming, ACM
Fortran Forum 1998, vol 17, no 2, pg 1-31

[18] C. Leiserson, Fat-trees: Universal networks for hardware efficient super-
computing, IEEE Transactions on Computer, C-34(10):892-901, October
1985.

[19] C. Clos, A Study of Non-Blocking Switching Networks, The Bell System
technical Journal, 32(2):406 424, March 1953.

[20] F. Petrini and M. Vanneschi, k -ary n -trees: High performance networks
for massively parallel architectures, In IPPS ’97: Proceedings of the
11th International Symposium on Parallel Processing, page 87, Geneva,
Switzerland, 1997. IEEE Computer Society.

[21] C. Seitz, Myrinet: A gigabit-per-second local area network, In Hot
Interconnects II, Stanford University, Stanford, CA, August 1994

[22] Fabrizio Petrini and Wu-chun Feng and Adolfy Hoisie and Salvador
Coll and Eitan Frachtenberg, The Quadrics Network: High Performance
Clustering Technology, IEEE Micro, 2002, vol 22 pg 46-57.

[23] Duncan Roweth and Mark Homewood, The Elan5 Network Processor,
Presented at ISC07 in Dresden, available from http://www.quadrics.com.

[24] Duncan Roweth, and David Addison, Optimised Gather Collectives on
QsNetII , Presented at PVM/MPI 2005. Lecture notes in Computer Science
vol 3666/3005 pg 407-414.

[25] G. Almasi, P. Heidleberger, C.J.Archer, X.Martorell, C.Erway, J.Moreira,
B.Steinmacher-Burow, Y.Zheng Optimisation of MPI collective communi-
cation on BlueGene/L systems, Proceedings of the 18th annual international
conference on Supercomputing, 2005, pg 253-262.

164

