Caliper: Precise and Responsive Traffic Generator

ARBOR

Yashar Ganjali Department of Computer Science University of Toronto

Hotl 2012 – Santa Clara, CA

Joint work with:

Monia Ghobadi, Geoff Salmon, Martin Labrecque, J. Gregory Steffan

yganjali@cs.toronto.edu http://www.cs.toronto.edu/~yganjali

Motivation

- Changing network components/protocols requires extensive and accurate experiments.
- Real network experiments are very difficult.
- Operators do not like changing their networks ...
 - ... before exhaustive tests in realistic settings.
 - Intrinsic risks associated with changing a complex network

Testbed experiments are usually the only option.

Challenges

- Question. How can we generate real/realistic traffic for testbed experiments?
 - So that results are applicable in practice
- Three key challenges
 - 1. Modeling: what does real traffic look like?
 - 2. Precision: how can we accurately inject packets to the network?
 - 3. **Responsiveness**: how can we ensure the generated traffic changes according to network conditions?

Challenges

- Question. How can we generate real/realistic traffic for testbed experiments?
 - So that results are applicable in practice
- Three key challenges
 - 1. Modeling: what does real traffic look like?
 - 2. **Precision**: how can we accurately inject packets to the network?
 - 3. **Responsiveness**: how can we ensure the generated traffic changes according to network conditions?

Example

- Internet router buffer sizing experiments
 - Tiny buffers: 20-50 packets
- Accurate packet injections are extremely critical
 - Tiny errors in injection times can have a sever impact on experiment results
- Cannot ignore TCP feedback loop
 - Packet drops can impact future traffic patterns and packet injection times
- Other examples: new congestion control schemes, denial of service attacks, ...

Problems with Existing Solutions

- Replaying pre-recorded traces
 - Example: Stanford Packet Generator (SPG)
- Feedback loop is broken
- Cannot be adapted based on higher level models

Problems with Existing Solutions

- Commercial traffic generators
 - Proprietary, inflexible, and expensive
 - Limited control on multiplexing, topology, …
 - Limited precision, focus on macro-level metrics
 - Not suitable for time-sensitive experiments

Problems with Existing Solutions

- Commodity hardware + software traffic generation
 - Accuracy bounded system timer resolution
 - Unpredictable be parameters
 - And, hardware

Caliper

- Precise and responsive traffic generator
 - Based on the NetFPGA platform
- Highly-accurate packet injection times
 - Explicit injection times
- Dynamic based on network state
 - Feedback loop, not a simple replay, ...
- Integratable with software-based traffic generation tools
 - Iperf, *ns-2*, ...

Components of Caliper

 Built on NetThreads, a platform for developing packet processing applications on FPGA based devices

Packet Creation

- Inter-transmission times and payload sizes can be
 - fixed, read from a file, or come from an application
- A user space process or kernel module creates a sequence of packets
- Descriptions of packets and transmission times are sent to the driver
- Communicates with driver using a NetLink socket.

Caliper Presasily specific placed by other user space or kernel 2012 Code

11

nf2 Linux Driver

- Modified version of nf2 driver.
- Main jobs:
 - Receive packet descriptions from NetLink socket.
 - Build command packets containing multiple descriptions.
 - Send command packets to the NetThreads app using DMA over the PCI bus.

PCI Bus is a Bottleneck

- Cannot copy all packets across PCI bus.
- Idea: do not copy packet payloads
 - Payloads are zeroed when sent from NetFPGA.
 - Experiment often only look at packet headers anyway.
 - Or, chosen from predefined payloads
- To minimize PCI transaction overheads
 - Driver gathers multiple packet descriptions into a single command packet.

• Sent to the NetThreads Application 2012 Yashar Ganjali

13

NetThreads Application on NetFPGA

- Eight threads of execution in NetThreads
 - 7 threads receive command packets and prepare packets to transmit in output memory.

• 1 thread sends packets from the output memory at correct times.

Integration with Existing Tools

- Caliper acts as a NIC device in the kernel.
- Transmits packets generated within the kernel with any software packet generator
 - ping, Iperf, or high level simulation tools (like *ns-2*)
- Caliper can transmit live TCP connections and closed-loop sessions.
 - Thus, the generated traffic becomes "responsive".
 - Need careful synchronization with software packet generator

Integrating Caliper with ns-2

- Define arbitrary topology in ns-2
- Create a sequence of packets
- Feed to Caliper
 - And vice versa

1. #Caliper's interval in seconds: 2.set caliper interval 0.001 3. #define the nodes n0, n1, n2, and n3 4.#define the links (n0, n2), (n2, n3), and (n3, n1) 5. #obtain the queue of the specific caliper queue: 6.set caliper queue [\$ns simplex-link-op \$n2 \$n3 queue] 7.#call use-caliper function: 8.\$cliper queue use-caliper 9. #set the physical IP/MAC addresses mapping table: 10.\$ns insert nat IP N2 IP N3 PORT N2 PORT N3 MAC N2 MAC N3 11. #Create a UDP agent and attach it to node n0 12. #Create a CBR traffic source and attach it to udp0 13.#set the rate of the CBR source: 14.\$cbr0 set interval \$caliper interval

Evaluation

- Focus: accuracy and flexibility features.
- The most important metric is accuracy of packet transmission times.

Inter-arrival times are measured in NetFPGA

• Thus, highly accurate

UDP, Fixed Inter-arrivals

It takes 8ns to send 1 byte on GigE.

Caliper: Precise and Responsive Traffic Generator -- Hotl 2012

Yashar Ganjali

UDP, Pareto Inter-arrivals

UDP, variable packet sizes

Caliper: Precise and Responsive Traffic Generator -- Hotl 2012

Closed-loop TCP traffic

- SPG fails here
- Three orders of magnitude improvement in error

Caliper: Precise and Responsive Traffic Generator -- Hotl 2012

[In]accuracy of Software Emulators

- Experiment to measure accuracy using NIST Net
 - Schedule packet transmissions with fixed-rate timers/interrupts.

[In]accuracy of Software Emulators

Ideally, inter-arrival times should not change

2012

Conclusion

- Generating realistic traffic in network testbeds is challenging yet crucial.
- Caliper dynamically and accurately controls the transmission times of a stream of packets
- Can be integrated with existing software traffic generators and network emulators.
- Extremely small error in injection times (~8 ns)
 - NetFPGA's clock cycle time.

Thank You!

Questions?

Caliper: Precise and Responsive Traffic Generator -- Hotl 2012

Yashar Ganjali

Back up slides

Modified Hardware Designs

- NetThreads design:
 - Removed Output Queues increase accuracy of transmission times.
- NetFPGA reference router design used in measurements:
 - Removed Input Arbiter and Output Port Lookup.

Inaccuracy of NISTNet

- Software network emulators schedule packet transmissions with fixed-rate timers/interrupts.
- Ran experiment to measure inaccuracy using NISTNet.

Packets Sent Every 70 µs

2012 Caliper: Precise and Responsive Traffic Generator -- F

Packets Sent Every 640 µs

Caliper: Precise and Responsive Traffic Generator -- Hotl 2012

Yashar Ganjali

Packets Sent Every 700 µs

Caliper: Precise and Responsive Traffic Generator -- Hotl 2012

Yashar Ganjali

Motivation: Network Testbed Experiments

- Testing systems which are sensitive to packet arrival times (ie. packet buffering and scheduling in routers) requires realistic test traffic.
 - Need to explore a wide range of traffic
- With a small testbed, this is difficult or impossible.
- With a large enough testbed, this is difficult and expensive.

Throughput: Smaller Packets

Throughput: Smaller Packets cont.

- Errors appear between 6000-7000ns.
- See the same problem for different packet sizes.
- The mean inter-transmission times are correct,
 - not a PCI bottleneck problem.
- Most likely: the sending thread is doing too much work between packet transmissions.
 - In 6400ns each thread has

6400 ns / 8 ns per cycle / 4 threads = 200 clock cycles

Throughput: MTU-Size Packets

