
Jeffrey Fong1, Wang Xiang1

 Yaxuan Qi2, Jun Li2, Weirong Jiang3

HOTI 2012

2012.08.21

1Reserach Institute of Information Technology, Tsinghua University, Beijing, China

2Tsinghua National Lab for Information Science and Technology, Beijing, China
3Ericsson Inc., San Jose, CA, USA

ParaSplit: A Scalable

Architecture on FPGA for Terabit

Packet Classification

NSLab, RIIT, Tsinghua Univ

Outline

• Background and Motivation

• The Packet Classification Problem

• ParaSplit

• Range Point Conversion Set Partitioning

• Simulated Annealing

• Hardware Design Implementation

• Performance Evaluation

• Conclusion

NSLab, RIIT, Tsinghua Univ

Outline

• Background and Motivation

• The Packet Classification Problem

• ParaSplit

• Range Point Conversion Set Partitioning

• Simulated Annealing

• Hardware Design Implementation

• Performance Evaluation

• Conclusion

NSLab, RIIT, Tsinghua Univ

The Packet Classification Problem

H
e
a

d
e
r

P
a

y
lo

a
d

Incoming Packet

B
u

ff
e
r
/R

A
M

Router / Firewall

Payload of Pkt n

Payload of Pkt n-1

Payload of Pkt 1

Rule Number Action

Rule 1 Deny

Rule 2 Allow

Rule N Drop

Terabit Ethernet /

Fibre Optics

Rule Lookup

High speed Packet Classification Engine

Rule Set

Action

Header

F
o

r
w

a
r
d

in
g

 E
n

g
in

e

Terabit Ethernet /

Fibre Optics

Outgoing Packet

H
e
a

d
e
r

P
a

y
lo

a
d

H
e
a

d
e
r

P
a

y
lo

a
d

• To identify and associate

each packet to a specific

rule

• May match multiple rules

• Used for:

– Routing

– Firewall/ Intrusion

Detection System

– Quality of Service

NSLab, RIIT, Tsinghua Univ

Related Works

SRAM Based

 Software running on general

hardware, i.e. multicore server

 Different algorithms gives

different search speed

and/or number of rules

Advantage:

 Price

 (generally) # of Rules

Disadvantage

 Speed

TCAM Based

Dedicated packet matching

hardware

 Different hardware

architecture gives

different speed

Advantage

 Speed

Disadvantage

 Price

 Energy consumption

NSLab, RIIT, Tsinghua Univ

Challenges and Goals

Increasing Bandwidth
 Increasing number of application that needs high

bandwidth: ie. VoIP, Video Streaming, Data Center/SDN

(OpenFlow)

 Needs to achieve high throughput

 Needs deterministic performance

Rule sets are becoming large and complex
 Complex with many header fields (multi-dimensional)

 Even state-of-the-art algorithm requires a few to hundreds

of GB

 Needs low memory consumption

NSLab, RIIT, Tsinghua Univ

Outline

• Background and Motivation

• The Packet Classification Problem

• ParaSplit

• Range Point Conversion Set Partitioning

• Simulated Annealing

• Hardware Design Implementation

• Performance Evaluation

• Conclusion

NSLab, RIIT, Tsinghua Univ

ParaSplit

ParaSplit is an optimized software-hardware solution

Rule Set Compiler: Generate data structure used by hardware

Packet Classification Engine: Find best matching rule

Rule Set Compiler

Rule Number Action

Rule 1 Deny

Rule 2 Allow

Rule Set

Packet

Classification

Engine (FPGA)

Header

Rule#/Action

ParaSplit

Optimized Data Structure

Preprocessing Packet Classification

NSLab, RIIT, Tsinghua Univ

Algorithmic Motivation

Worst case decision tree spatial complexity:

C=Θ(nd)

Depends on the intrinsic property of rule set

Difference in memory consumption caused by

overlapping/conflicting rules leading to rule

replication

Rule Set
Number of

Rules

Number of

Leafs

Replications Memory

Consumption

ACL1_10K 9603 60657 6.32 947.8KB

IPC1_10K 9037 4278300 473.42 65.3MB

FW1_10K 9311 64499809 6927.26 984.2MB

Rule Replication and Memory Consumption in HyperSplit

NSLab, RIIT, Tsinghua Univ

Algorithmic Motivation

Example of overlapping

rules causing replication

Rule D1 D2

R1 J<x<K *

R2 * L<y<M

R3 * *

C1

C2

R1

C3

R3 C4

R2 R3

C3

R3 C4

R2 R3Replicated!

R3 R3 R2

D2

D1

R3 R3

R1

R2

L M

J

K

C3 C4

C2

C1

NSLab, RIIT, Tsinghua Univ

Rule Set Partitioning

• Is it possible to “somehow” remove these “conflicting rules”?

• Yes, it turns out that it is possible to reduce memory consumption considerably by

removing “certain” rules

• Idea:

• Divide the original rule set into M groups/subset, each group containing non-

conflicting rules, such that the union of all subset is the original rule set

• Build a decision tree based on each group of rules

• When doing a look up, traverse all trees and combine results by selecting the

highest priority rule

• How to find these “good” groups/subset of rules?

• ParaSplit: Range-Point Conversion to generate a good initial grouping + Simulated

Annealing to approximate global minima

• Deal with multiple tree traversal by taking advantage of abundant

resources and parallelism available on FPGA

NSLab, RIIT, Tsinghua Univ

Range-Point Conversion

• Difficult to group rules represented as objects in F-dimensional space

• Convert it into points in 2F dimensional space by treating starting and

end point as separate dimensions and then group points together

Rule 1

Rule 2

0 1 2 3 4 5 6

s

s

Field x

e

e

Packet A Packet B

F
ield

 x
 -

e
Rule 1

Rule 2

0 1 2 3 4 5 6

Field x -s

0
 1

 2
 3

 4
 5

 6
Packet A

Packet B

Field-x Start (s) End (e)

Rule 1 2 3

Rule 2 1 6

Packet Field-x Matched Rules

A 3 1, 2

B 5 2

NSLab, RIIT, Tsinghua Univ

Simulated Annealing

• Using the initial partitions generated by Range-Point

partitioning, apply Simulated Annealing to approx. global

minima

• Goal is to further reduce memory usage (cost = mem.

consumption)

• Randomly select 2 subsets, Si and Sj, and perform one of three

possible action:

1. Move rule, Ri, from Si and Sj

2. Swap rule, Ri, from Si with rule, Rj, from Sj

3. Move rule, Rj,from Sj to Si

• With a probability of accept the new state

• T = temperature of system = (initial cost)/(50*ln(2))

•

NSLab, RIIT, Tsinghua Univ

Decision Tree & Hardware Mapping

• HyperSplit is then

applied to build a

decision tree for each

group

• Group nodes within

the same level into

one stage

• Build a pipeline

STAGE 3

STAGE 2

STAGE 4

STAGE 1

MATCHED RULE

INPUT PACKET

X,01

Y,00 X,10

R1 R2 R3 Y,10

R5 R4

MATCHED RULE

INPUT PACKET

NSLab, RIIT, Tsinghua Univ

Hardware Implementation

Each rule subset maps into a separate pipeline

Priority resolver to find the best matching rule

Dual-port BRAM for double performance without extra memory

usage

Multi-engine on a single FPGA for higher throughput

Engine Packet In

Priority Resolver

Matched Rule Out

Matched Rule OutMatched Rule Out
Matched Rule Out

Matched Rule Out
Matched Rule Out

Matched Rule Out
Matched Rule Out

Packet In

Select Highest Rule from 3 separate groups

Matched Rule Out

Engine

Select Highest Rule from 3 separate groups

Matched Rule Out

Engine

Select Highest Rule from 3 separate groups

Matched Rule Out

Engine

Select Highest Rule from 3 separate groups

Matched Rule Out

Engine

Select Highest Rule from 3 separate groups

Matched Rule Out

Engine

Priority Resolver

Engine

Packet In
Packet In

Packet In
Packet In

Packet In

Packet In
Packet In

Packet In
Packet In

Packet In
Packet In

Matched Rule Out
Matched Rule Out

Matched Rule Out
Matched Rule Out

Matched Rule Out

NSLab, RIIT, Tsinghua Univ

Outline

• Background and Motivation

• The Packet Classification Problem

• ParaSplit

• Range Point Conversion Set Partitioning

• Simulated Annealing

• Hardware Design Implementation

• Performance Evaluation

• Conclusion

NSLab, RIIT, Tsinghua Univ

Test Bed

Tested with:

• a publicly available rule set from Washington University

• Used the IPC & FW 100, 1K, 5K, 10K rule sets

• OpenFlow-like 11-tuple rule set generated based on 216

real-life 11-tuple rules from enterprise customers

Design is implemented on a Xilinx Virtex-5

• Model: VC5VSX240T

• Containing 4,200Kb Distributed RAM and 18,576Kb

Block RAM

NSLab, RIIT, Tsinghua Univ

ParaSplit vs Well-known Algor.

• Memory consumption reduction by an average of 150x!

• Rule sets that used to consume 1GB of memory can now fit

within the 2MB BRAM of the FPGA

Note: HSM and HiCuts_1 fails to generate data structure for ipc1_10K and fw1_10K due to exhaustion of

memory (over 4GB)

NSLab, RIIT, Tsinghua Univ

ParaSplit vs EffiCuts Scheme

• ParaSplit requires 20% to 500% less memory than EffiCuts

scheme

NSLab, RIIT, Tsinghua Univ

OpenFlow-like Complex Rules

• Up to 3 orders of magnitude lower memory consumption than

HyperSplit

•Worst-case tree height is also reduced by at least 30%

NSLab, RIIT, Tsinghua Univ

Hardware Performance

NSLab, RIIT, Tsinghua Univ

Outline

• Background and Motivation

• The Packet Classification Problem

• ParaSplit

• Range Point Conversion Set Partitioning

• Simulated Annealing

• Hardware Design Implementation

• Performance Evaluation

• Conclusion

NSLab, RIIT, Tsinghua Univ

Conclusion and Future Work

ParaSplit is optimized software-hardware combined solution

with the following contributions:

 Set partitioning that achieves 100x memory reduction compared to

algorithms without rule set partitioning

 Pipelined decision tree to hardware mapping with parallel pipeline

and engines that can provide over 100Gbps sustained throughput per

engine

 Due to low memory consumption, multiple engines can be used to

provide up to and over 1Tbps

Future Works

 Heterogeneous Engine to support various algorithms

 Better set partitioning heuristics

Thank you!

NSLab, RIIT, Tsinghua Univ

Hardware Implementation

STAGE n

Input Packet Header

MUX

Comparator

Next Node In

ADD 1

MUX

0

Comparator

RAM

Found In

OR

Output Packet Header

MUX

Next Node Out Found Out

Implemented with Verilog

Hardware Description

Language (HDL)

NSLab, RIIT, Tsinghua Univ

Simulated Annealing

NSLab, RIIT, Tsinghua Univ

RA + SA

NSLab, RIIT, Tsinghua Univ

Set Partitioning on Example Rules

R3 R3R1 R3 R3R2

C1

D1 D2

C1 C2 C3 C4

R3 C2

R1 R3

C3

R3 C4

R2 R3

Tree 1
Nodes = 5
Leaf = 3

Tree 2
Nodes = 5
Leaf = 3

NSLab, RIIT, Tsinghua Univ

Grouping Heuristics

Heuristics:

1. Minimum Distance:

group similar rules

2. Maximum Distance:

group dissimilar rules

3. Distance from origin:

mixture of similar and

dissimilar

F
ield

 x
 -

e

Rule 1

Rule 4

Field x -s

0
 0

.1
 0

.2
 0

.3
 0

.4
 0

.5
 0

.6

Rule 2

Rule 3

0 0.1 0.2 0.3 0.4 0.5 0.6

v

Heuristic 3

Heuristic 2

Heuristic 1

NSLab, RIIT, Tsinghua Univ

Reduced Complexity

Mathematically:

 Divide rule set into K groups

 Assume each rule subset has n/K rules

 Complexity becomes:

 Θ(K*(n/K)F)=Θ(nF/K(F-1)) < Θ(nF)

Complexity is reduced (by a factor of K(F-1))

