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The Packet Classification Problem 
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• To identify and associate 

each packet to a specific 

rule 

• May match multiple rules 

• Used for: 

– Routing 

– Firewall/ Intrusion 

Detection System 

– Quality of Service 
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Related Works 

SRAM Based 

 Software running on general 

hardware, i.e. multicore server 

 Different algorithms gives 

different search speed 

and/or number of rules 

Advantage: 

 Price 

 (generally) # of Rules 

Disadvantage 

 Speed 

TCAM Based 

Dedicated packet matching 

hardware 

 Different hardware 

architecture gives 

different speed 

Advantage 

 Speed 

Disadvantage 

 Price 

 Energy consumption 
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Challenges and Goals 

Increasing Bandwidth 
 Increasing number of application that needs high 

bandwidth: ie. VoIP, Video Streaming, Data Center/SDN 

(OpenFlow) 

 Needs to achieve high throughput 

 Needs deterministic performance 

Rule sets are becoming large and complex 
 Complex with many header fields (multi-dimensional) 

 Even state-of-the-art algorithm requires a few to hundreds 

of GB 

 Needs low memory consumption 
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ParaSplit 

ParaSplit is an optimized software-hardware solution 

Rule Set Compiler: Generate data structure used by hardware 

Packet Classification Engine: Find best matching rule 

 

Rule Set Compiler 

Rule Number Action 
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Rule Set 

Packet 

Classification 

Engine (FPGA) 

Header 
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ParaSplit 

Optimized Data Structure 

Preprocessing Packet Classification 
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Algorithmic Motivation 

Worst case decision tree spatial complexity: 

C=Θ(nd) 

Depends on the intrinsic property of rule set 

 

 

 

 

 

Difference in memory consumption caused by 

overlapping/conflicting rules leading to rule 

replication 

 

 

 
 

Rule Set 
Number of 

Rules 

Number of 

Leafs 

Replications Memory 

Consumption 

ACL1_10K 9603 60657 6.32 947.8KB 

IPC1_10K 9037 4278300 473.42 65.3MB 

FW1_10K 9311 64499809 6927.26 984.2MB 

 

Rule Replication and Memory Consumption in HyperSplit 
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Algorithmic Motivation 

Example of overlapping 

rules causing replication 
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Rule Set Partitioning 

• Is it possible to “somehow” remove these “conflicting rules”? 

• Yes, it turns out that it is possible to reduce memory consumption considerably by 

removing “certain” rules 

• Idea:  

• Divide the original rule set into M groups/subset, each group containing non-

conflicting rules, such that the union of all subset is the original rule set 

• Build a decision tree based on each group of rules 

• When doing a look up, traverse all trees and combine results by selecting the 

highest priority rule 

 

• How to find these “good” groups/subset of rules? 

• ParaSplit: Range-Point Conversion to generate a good initial grouping + Simulated 

Annealing to approximate global minima  

• Deal with multiple tree traversal by taking advantage of abundant 

resources and parallelism available on FPGA 
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Range-Point Conversion 

• Difficult to group rules represented as objects in F-dimensional space 
  

• Convert it into points in 2F dimensional space by treating starting and 

end point as separate dimensions and then group points together 
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B 5 2 

 



NSLab,  RIIT,  Tsinghua Univ 

Simulated Annealing 

• Using the initial partitions generated by Range-Point 

partitioning, apply Simulated Annealing to approx. global 

minima 

• Goal is to further reduce memory usage (cost = mem. 

consumption) 

• Randomly select 2 subsets, Si and Sj, and perform one of three 

possible action: 

1. Move rule, Ri, from Si and Sj 

2. Swap rule, Ri, from Si with rule, Rj, from Sj 

3. Move rule, Rj,from Sj to Si 

• With a probability of                           accept the new state 

• T = temperature of system = (initial cost)/(50*ln(2)) 

•   
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Decision Tree & Hardware Mapping 

• HyperSplit is then 

applied to build a 

decision tree for each 

group 

• Group nodes within 

the same level into 

one stage 

• Build a pipeline 
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Hardware Implementation 

Each rule subset maps into a separate pipeline 

Priority resolver to find the best matching rule 

Dual-port BRAM for double performance without extra memory 

usage 

Multi-engine on a single FPGA for higher throughput 
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Test Bed 

Tested with: 

• a publicly available rule set from Washington University 

• Used the IPC & FW 100, 1K, 5K, 10K rule sets 

• OpenFlow-like 11-tuple rule set generated based on 216 

real-life 11-tuple rules from enterprise customers 

 

Design is implemented on a Xilinx Virtex-5 

• Model: VC5VSX240T 

• Containing 4,200Kb Distributed RAM and 18,576Kb 

Block RAM 
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ParaSplit vs Well-known Algor. 

• Memory consumption reduction by an average of 150x! 

• Rule sets that used to consume 1GB of memory can now fit 

within the 2MB BRAM of the FPGA 
 

Note: HSM and HiCuts_1 fails to generate data structure for ipc1_10K and fw1_10K due to exhaustion of 

memory (over 4GB) 
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ParaSplit vs EffiCuts Scheme 

• ParaSplit requires 20% to 500% less memory than EffiCuts 

scheme 
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OpenFlow-like Complex Rules 

• Up to 3 orders of magnitude lower memory consumption than 

HyperSplit 

•Worst-case tree height is also reduced by at least 30% 
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Hardware Performance 
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Conclusion and Future Work 

ParaSplit is optimized software-hardware combined solution 

with the following contributions: 

 Set partitioning that achieves 100x memory reduction compared to 

algorithms without rule set partitioning  

 Pipelined decision tree to hardware mapping with parallel pipeline 

and engines that can provide over 100Gbps sustained throughput per 

engine 

 Due to low memory consumption, multiple engines can be used to 

provide up to and over 1Tbps 

Future Works 

 Heterogeneous Engine to support various algorithms 

 Better set partitioning heuristics 

 



Thank you! 
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Hardware Implementation 
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Simulated Annealing 
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RA + SA 
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Set Partitioning on Example Rules 
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Grouping Heuristics  

Heuristics: 
  

1. Minimum Distance: 

group similar rules 

 

2. Maximum Distance: 

group dissimilar rules 

 

3. Distance from origin: 

mixture of similar and 

dissimilar 

 

F
ield

 x
 -

e

Rule 1

Rule 4

Field x -s

0
              0

.1
            0

.2
          0

.3
           0

.4
           0

.5
           0

.6

Rule 2

Rule 3

0              0.1            0.2          0.3           0.4           0.5           0.6

v

Heuristic 3

Heuristic 2

Heuristic 1



NSLab,  RIIT,  Tsinghua Univ 

Reduced Complexity 

Mathematically: 

 Divide rule set into K groups 

 Assume each rule subset has n/K rules 

 Complexity becomes: 

  Θ(K*(n/K)F)=Θ(nF/K(F-1)) < Θ(nF) 

Complexity is reduced (by a factor of K(F-1) ) 


