
Copyright © 2012 Solarflare Communications, Inc. All Rights Reserved.

OpenOnload

Dave Parry – VP of Engineering
Steve Pope – CTO
Dave Riddoch – Chief Software Architect

Copyright © 2012 Solarflare Communications, Inc. Slide 2

OpenOnload® Application Acceleration Software

• Accelerated performance
• TCP/IP, UDP and multicast acceleration

• Streamlines and reduces interrupts, context
switches and data copies

• Reduces latency by 50%, increases message
rates 3x or more

• Seamlessly integrates into existing
infrastructure

• Binary compatible with industry standard APIs
• No software modifications are needed

• Standards-based solution uses TCP/IP and UDP
• No specialized protocols needed

• Compatible with existing Ethernet infrastructure

• Open source, available with bundled support

Copyright © 2012 Solarflare Communications, Inc. Slide 3

Offer great performance because network access is made in the context
of the application process

– Reduces overheads, but requires user-safe hardware and special libraries
– Increased performance and parallelism, but at the cost of specialized APIs

requiring application changes or specialized middleware
– Application compatibility achievable via standard APIs (eg. BSD sockets) ,

but at the cost of API completeness and versatility

OS Bypass Architectures

Network Adaptor

Kernel
Context

Kernel
Driver

Kernel
Protocol

Application
Context

DMA

Application

Network Adaptor

Kernel
Context

Kernel
Driver

Kernel
Protocol

Application
Context

Bypass
Driver

DMA

Application

Network Adaptor

Kernel
Context

Kernel
Driver

Kernel
Protocol

Application
Context

Bypass
Driver

DMA

Application

User
Protocol

Copyright © 2012 Solarflare Communications, Inc. Slide 4

Provides the benefits of a bypass architecture without the sacrifices or
compromises, by implementing a complete hybrid model

– Supports both high-performance, and fully conformant operation in
congested environments

– Supports mixed operation of accelerated and non-accelerated interfaces
– Protected, shared state allows sharing of sockets between processes (eg.

via fork()), and supports persistence of state through process creation.
– Provides compliance and completeness via rich implementation backed by

ability to fall-back to kernel stack when necessary

OpenOnload

Network Adaptor

Kernel
Context

Kernel
Driver

Kernel
Protocol

Application
Context

DMA

Application

Network Adaptor

Bypass
Driver

DMA

Kernel
Context

Kernel
Driver

Kernel
Protocol

Application
Context

Application

User
Protocol

Standard
Posix
Socket
Interface

Standard
Ethernet
Protocol

Copyright © 2012 Solarflare Communications, Inc. Slide 5

How Does the NIC Help?

• Low latency
cut-through
design

• 1024 VNICs
per port

• VNIC == Virtual NIC
– Independent interface for sending

and receiving packets

• Flow steering
– Direct individual flows to specific VNICs
– Supports scaling and NUMA locality

Copyright © 2012 Solarflare Communications, Inc. Slide 6

Kernel Networking

• Traditionally the network stack
executes in the OS kernel

• Received packets are processed in
response to interrupts

• Applications invoke the network via
the BSD sockets interface by making
system calls

Copyright © 2012 Solarflare Communications, Inc. Slide 7

Kernel Bypass – OpenOnload

• Dedicate a VNIC per application or
thread

• TCP/UDP stack as user-level library

• Critical path entirely at user-level

• Reduces per-message CPU time
– Cuts latency in half
– Increases message rate by 5x per

core
– Improves scaling

• Fully compatible – no changes to
applications needed

kernel

Copyright © 2012 Solarflare Communications, Inc. Slide 8

OpenOnload Architecture

• Stacks live in the kernel, and
are mapped into user-space

• Copy of File Descriptor table
enables selective handling
via Onload or kernel

• Supports fork(), exec(), …

Copyright © 2012 Solarflare Communications, Inc. Slide 9

• Sufficient CPU cores to dedicate one
to each thread / process

• Configure Onload to spin waiting for
network events rather than block in
system calls such as recv(), poll(),
epoll()

• Result is that no interrupts are
required or generated, latency and
jitter are minimised

• Not suitable for applications where
there are more threads than CPU
cores

OpenOnload – CPU Core for Each Thread

CPU[0] CPU[1] CPU[2] CPU[3]

Copyright © 2012 Solarflare Communications, Inc. Slide 10

• If multiple Onload threads /
processes per CPU core

• Configure Onload to block or
spin-block

• Interrupts generated on per-
application (onload stack
basis). Can be affinitized just
like the application thread

• TCP state shared between
kernel and user mode.
Enables protocol to be
executed by kernel on behalf
on a de-scheduled or
unresponsive thread

OpenOnload – with Interrupts

CPU[0] CPU[1]

IRQ[1]
IRQ[0]

kernel kernel

Copyright © 2012 Solarflare Communications, Inc. Slide 11

• Onload spinning without interrupts for lowest latency / jitter in
configurations where CPU resources are not contended

• Onload with interrupts enables threads to block and be scheduled

• In both cases, protocol processing often achieved in the context of the
application with reduced overhead

• In both cases, TCP processing can take place in either user-mode or
kernel mode

• This hybrid architecture also necessary to support the full POSIX API –
fork(), exec() and also debugging / diagnostics

OpenOnload – to Spin or Not to Spin? - Hybrid

Copyright © 2012 Solarflare Communications, Inc. Slide 12

The Result…Performance

• SFN6x22F the choice for low-latency / highest message rates
with ultra-low jitter

• Also, Maximum multi-stream packet rate of 20M pps
Tests run using sfnt-stream (single stream data) / openonload-201109-u1
Intel i5-2500K CPU @ 3.30GHz, 8GB mem

Copyright © 2012 Solarflare Communications, Inc. Slide 13

OpenOnload’s hybrid kernel/user architecture provides for
• High performance with application compatibility

• Full sockets API compliance via mixed OpenOnload/Kernel processing
and unique shared-stack model

• Arbitrary mixing of accelerated and non-accelerated interfaces

• Efficiency via steering and affinitization improving locality

• Hybrid busy-wait/interrupt model enables timely processing in user or
kernel mode as appropriate for optimal performance and efficiency

• Single or dual-ended usage – fully standard at the application
interface, fully standard on the wire

Conclusions

