
Copyright © 2012 Solarflare Communications, Inc. All Rights Reserved.

OpenOnload

Dave Parry – VP of Engineering
Steve Pope – CTO
Dave Riddoch – Chief Software Architect



Copyright © 2012 Solarflare Communications, Inc. Slide 2

OpenOnload® Application Acceleration Software

• Accelerated performance
• TCP/IP, UDP and multicast acceleration

• Streamlines and reduces interrupts, context 
switches and data copies

• Reduces latency by 50%, increases message 
rates 3x or more

• Seamlessly integrates into existing 
infrastructure

• Binary compatible with industry standard APIs
• No software modifications are needed

• Standards-based solution uses TCP/IP and UDP
• No specialized protocols needed

• Compatible with existing Ethernet infrastructure

• Open source, available with bundled support
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Offer great performance because network access is made in the context 
of the application process

– Reduces overheads, but requires user-safe hardware and special libraries
– Increased performance and parallelism, but at the cost of specialized APIs 

requiring application changes or specialized middleware
– Application compatibility achievable via standard APIs (eg. BSD sockets) , 

but at the cost of API completeness and versatility

OS Bypass Architectures
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Provides the benefits of a bypass architecture without the sacrifices or 
compromises, by implementing a complete hybrid model

– Supports both high-performance, and fully conformant operation in 
congested environments

– Supports mixed operation of accelerated and non-accelerated interfaces
– Protected, shared state allows sharing of sockets between processes (eg. 

via fork()), and supports persistence of state through process creation.
– Provides compliance and completeness via rich implementation backed by 

ability to fall-back to kernel stack when necessary

OpenOnload
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How Does the NIC Help?

• Low latency
cut-through
design

• 1024 VNICs
per port

• VNIC == Virtual NIC
– Independent interface for sending

and receiving packets

• Flow steering
– Direct individual flows to specific VNICs
– Supports scaling and NUMA locality
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Kernel Networking

• Traditionally the network stack 
executes in the OS kernel

• Received packets are processed in 
response to interrupts

• Applications invoke the network via 
the BSD sockets interface by making 
system calls
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Kernel Bypass – OpenOnload

• Dedicate a VNIC per application or 
thread

• TCP/UDP stack as user-level library

• Critical path entirely at user-level

• Reduces per-message CPU time
– Cuts latency in half
– Increases message rate by 5x per 

core
– Improves scaling

• Fully compatible – no changes to 
applications needed

kernel
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OpenOnload Architecture

• Stacks live in the kernel, and 
are mapped into user-space

• Copy of File Descriptor table 
enables selective handling 
via Onload or kernel

• Supports fork(), exec(), …



Copyright © 2012 Solarflare Communications, Inc. Slide 9

• Sufficient CPU cores to dedicate one 
to each thread / process

• Configure Onload to spin waiting for 
network events rather than block in 
system calls such as recv(), poll(), 
epoll()

• Result is that no interrupts are 
required or generated, latency and 
jitter are minimised 

• Not suitable for applications where 
there are more threads than CPU 
cores

OpenOnload – CPU Core for Each Thread 

CPU[0] CPU[1] CPU[2] CPU[3]
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• If multiple Onload threads / 
processes per CPU core

• Configure Onload to block or 
spin-block

• Interrupts generated on per-
application (onload stack 
basis). Can be affinitized just 
like the application thread

• TCP state shared between 
kernel and user mode. 
Enables protocol to be 
executed by kernel on behalf 
on a de-scheduled or 
unresponsive thread

OpenOnload – with Interrupts
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• Onload spinning without interrupts for lowest latency / jitter in 
configurations where CPU resources are not contended

• Onload with interrupts enables threads to block and be scheduled  

• In both cases, protocol processing often achieved in the context of the 
application with reduced overhead

• In both cases, TCP processing can take place in either user-mode or 
kernel mode

• This hybrid architecture also necessary to support the full POSIX API –
fork(), exec() and also debugging / diagnostics

OpenOnload – to Spin or Not to Spin? - Hybrid
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The Result…Performance

• SFN6x22F the choice for low-latency / highest message rates 
with ultra-low jitter 

• Also, Maximum multi-stream packet rate of 20M pps
Tests run using sfnt-stream (single stream data) / openonload-201109-u1
Intel i5-2500K CPU @ 3.30GHz, 8GB mem
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OpenOnload’s hybrid kernel/user architecture provides for
• High performance with application compatibility

• Full sockets API compliance via mixed OpenOnload/Kernel processing 
and unique shared-stack model

• Arbitrary mixing of accelerated and non-accelerated interfaces

• Efficiency via steering and affinitization improving locality

• Hybrid busy-wait/interrupt model enables timely processing in user or 
kernel mode as appropriate for optimal performance and efficiency

• Single or dual-ended usage – fully standard at the application 
interface, fully standard on the wire

Conclusions


