On the Data Path Performance of Leaf-Spine Datacenter Fabrics

Mohammad Alizadeh

Joint with: Tom Edsall

Datacenter Networks

Must complete transfers or "flows" quickly need very high throughput, very low latency

Leaf-Spine DC Fabric

Approximates ideal output-queued switch

- How close is Leaf-Spine to ideal OQ switch?
- What impacts its performance?
 - Link speeds, oversubscription, buffering

Methodology

- Widely deployed mechanisms
 - TCP-Reno+Sack
 - DropTail (10MB shared buffer per switch)
 - ECMP (hash-based) load balancing
- OMNET++ simulations
 - 100×10Gbps servers (2-tiers)
 - Actual Linux 2.6.26 TCP stack

Metric: Flow completion time

- Realistic workloads
 - Bursty query traffic with Incast pattern
 - All-to-all background traffic: web search, data mining

Impact of Link Speed

Three non-oversubscribed topologies:

Impact of Link Speed

- 40/100Gbps fabric: ~ same FCT as OQ
- 10Gbps fabric: FCT up 40% worse than OQ

Intuition

Higher speed links improve ECMP efficiency

Prob of 100% throughput = 3.27%

Prob of 100% throughput = 99.95%

Impact of Buffering

Where do queues build up?

2.5:1 oversubscribed fabric with large buffers

- Leaf fabric ports queues ≈ Spine port queues
 - 1:1 port correspondence; same speed & load

Impact of Buffering

Where are large buffers more effective for Incast bursts?

Larger buffers better at Leaf than Spine

Summary

40/100Gbps fabric + ECMP ≈ OQ-switch;
some performance loss with 10Gbps fabric

 Buffering should generally be consistent in Leaf & Spine tiers

 Larger buffers more useful in Leaf than Spine for Incast

Impact of Link Speed

Methodology

- Widely deployed mechanisms
 - TCP-Reno+Sack
 - DropTail (10MB shared buffer per switch)
 - ECMP (hash-based) load balancing
- OMNET++ simulations
 - 100×10Gbps servers (2-tiers)
 - Actual Linux 2.6.26 TCP stack
- Realistic workloads
 - Bursty query traffic
 - All-to-all background traffic: web search, data mining

Metric:

Flow completion time

Workloads

- Realistic workloads based on empirical studies
 - Query traffic with Incast pattern
 - All-to-all background traffic

Intuition

Incast events are most severe at receiver

