

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects?

N. S. Islam, X. Lu, M. W. Rahman, and D. K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering
The Ohio State University, Columbus, OH, USA

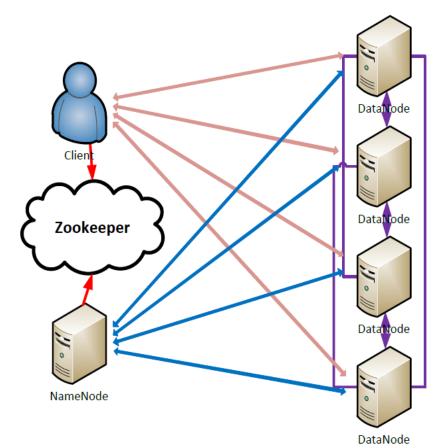
- Introduction and Motivation
- Problem Statement
- Design
- Performance Evaluation
- Conclusion & Future work

Introduction

- Big Data: provides groundbreaking opportunities for enterprise information management and decision making
- The rate of information growth appears to be exceeding Moore's Law
- The amount of data is exploding; companies are capturing and digitizing more information that ever
- 35 zettabytes of data will be generated and consumed by the end of this decade

Big Data Technology

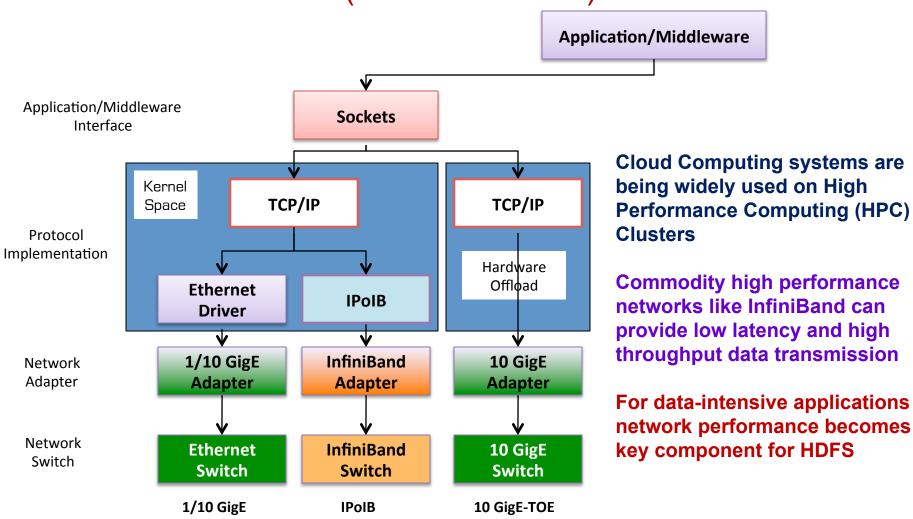
- Apache Hadoop is a popular Big Data technology
 - Provides framework for largescale, distributed data storage and processing
- Hadoop is an open-source implementation of MapReduce programming model
- Hadoop Distributed File System (HDFS) (http://hadoop.apache.org/) is the underlying file system of Hadoop and Hadoop DataBase, HBase


Hadoop Framework

Hadoop Distributed File System (HDFS)

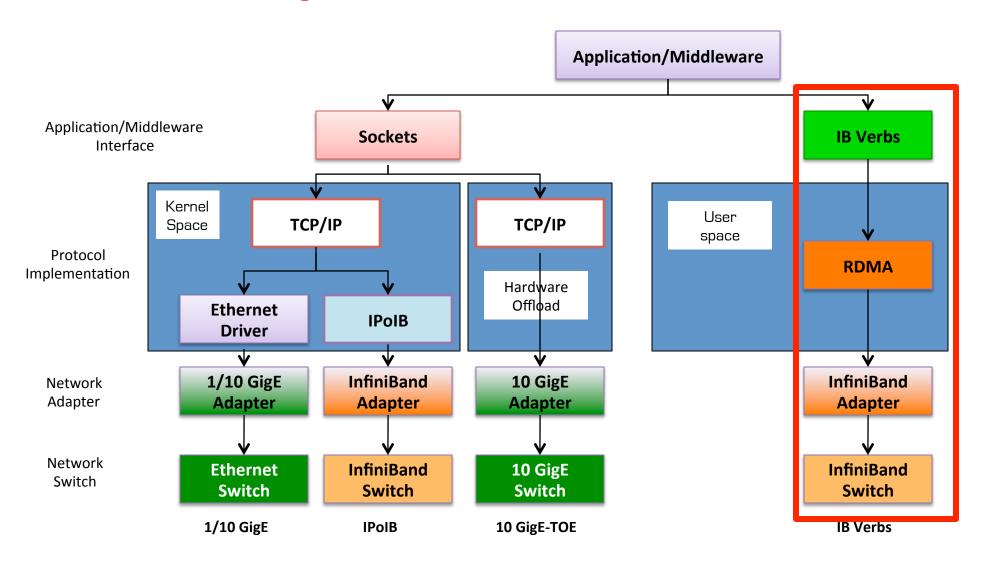
- Adopted by many reputed organizations
 - eg:- Facebook, Yahoo!
- Highly reliable and fault-tolerant replication
- NameNode: stores the file system namespace
- DataNode: stores data blocks
- Developed in Java for platformindependence and portability
- Uses Java sockets for communication

(HDFS Architecture)

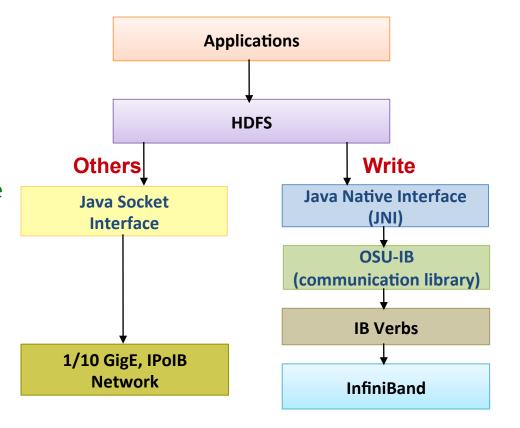


5

Modern High Performance Interconnects


(Socket Interface)

Modern High Performance Interconnects



RDMA-based Design of HDFS

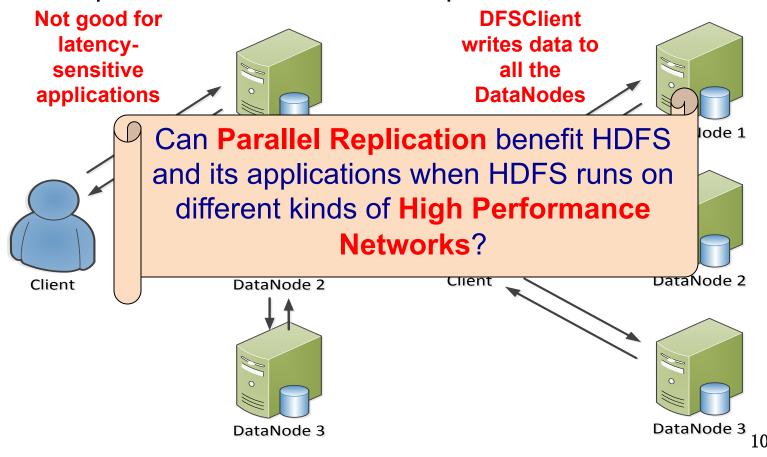
Enables high performance RDMA communication, while supporting traditional socket interface

- JNI Layer bridges Java based HDFS with communication library written in native code
- Only the communication part of HDFS Write is modified; No change in HDFS architecture
- Available in Hadoop RDMA 0.9.1 release http://hadoop-rdma.cse.ohio-state.edu/

N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subramoni, C. Murthy and D. K. Panda, High Performance RDMA-Based Design of HDFS over InfiniBand, Supercomputing (SC), Nov 2012

Hadoop-RDMA Release

- High-Performance Design of Hadoop over RDMA-enabled Interconnects
 - High performance design with native InfiniBand support at the verbs-level for HDFS, MapReduce, and RPC components
 - Easily configurable for both native InfiniBand and the traditional sockets-based support (Ethernet and InfiniBand with IPoIB)
 - Current release: 0.9.1
 - Based on Apache Hadoop 0.20.2
 - Compliant with Apache Hadoop 0.20.2 APIs and applications
 - Tested with
 - Mellanox InfiniBand adapters (DDR, QDR and FDR)
 - Various multi-core platforms
 - Different file systems with disks and SSDs
 - <u>http://hadoop-rdma.cse.ohio-state.edu</u>


Updated release with Hadoop stable version (1.2.1) coming soon

HDFS Replication: Pipelined vs Parallel

- Basic mechanism of HDFS fault tolerance is Data Replication
 - Replicates each block to multiple DataNodes

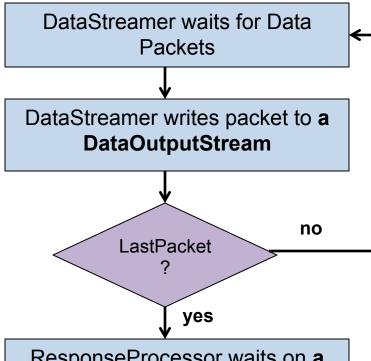
- Introduction and Motivation
- Problem Statement
- Design
- Performance Evaluation
- Conclusion & Future work

Problem Statement

- What are the challenges to introduce the parallel replication scheme in both the socket-based and RDMA-based design of HDFS?
- Can we re-design HDFS to take advantage of the parallel replication scheme over high performance networks and protocols?
- What will be the impact of parallel replication on Hadoop benchmarks over different interconnects and protocols?
- Can we observe performance improvement for other cloud computing middleware such as HBase with this replication technique?

- Introduction and Motivation
- Problem Statement
- Design
 - Parallel Replication in Socket-based Design of HDFS
 - Parallel Replication in RDMA-based Design of HDFS
- Performance Evaluation
- Conclusion & Future work

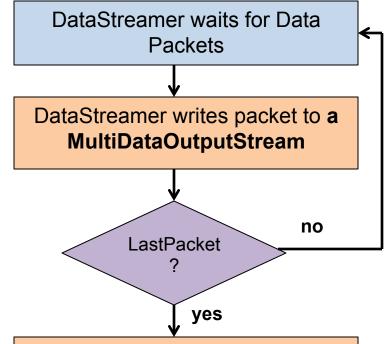
Parallel Replication in Socket-based Design of HDFS (Issues and Challenges)


- In Pipelined Replication
 - DFSClient writes to the first DataNode in the pipeline
 - DFSClient receives acknowledgements from only the first DataNode in the pipeline
- In Parallel Replication
 - DFSClient writes to all (default is three) the DataNodes the block should be replicated to
 - DFSClient receives acknowledgements from all the DataNodes
 - MultiDataOutputStream and MultiDataInputStream

NETWORK-BASED COMPUTING LABORATORY

Parallel Replication in Socket-based Design of HDFS (Communication Flow)

DFSClient



ResponseProcessor waits on a

DataInputStream till it gets
acknowledgements from the first
DataNode

Pipelined Replication

DFSClient

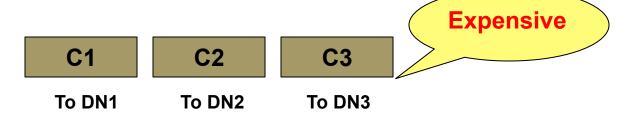
ResponseProcessor waits on a MultiDataInputStream till it gets acknowledgements from all the DataNodes

15

Parallel Replication

- Introduction and Motivation
- Problem Statement
- Design
 - Parallel Replication in Socket-based Design of HDFS
 - Parallel Replication in RDMA-based Design of HDFS
- Performance Evaluation
- Conclusion & Future work

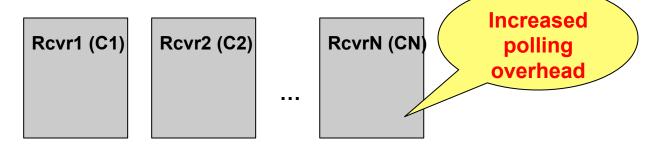
Parallel Replication in RDMA-based Design of HDFS (Issues and Challenges)


- The RDMA-based design of HDFS implements pipelined replication
- Challenges to incorporate parallel replication
 - Reducing connection creation overhead in DFSClient
 - Minimizing the polling overhead
 - Reducing the total wait time for acknowledgements in the DFSClient side

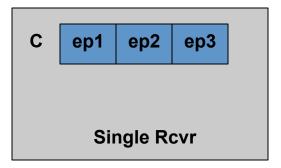
Parallel Replication in RDMA-based Design of HDFS (Connection Management)

 RDMA connection creation is expensive. DFSClient now needs three connections instead of one

 Single Connection object; different end-points to connect to different DataNodes



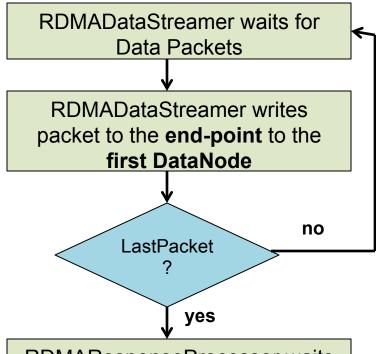
It also reduces the total wait time for acknowledgements



Parallel Replication in RDMA-based Design of HDFS (Minimizing Polling Overhead)

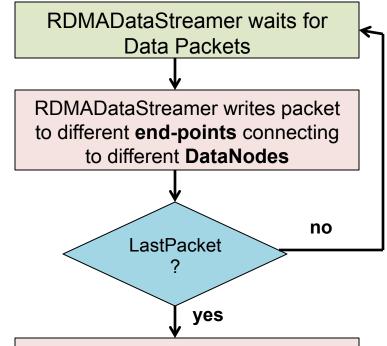
One Receiver per client (or block) in the DataNode increases polling overhead

 Single Receiver in the DataNode; different clients connect to different end-points of the same connection object


19

NETWORK-BASED COMPUTING LABORATORY

Parallel Replication in RDMA-based Design of HDFS (Communication Flow)


DFSClient

RDMAResponseProcessor waits on **the end-point** till it gets acknowledgements from the first DataNode

Pipelined Replication

DFSClient

RDMAResponseProcessor waits on the single Connection object till it gets acknowledgements from all the DataNodes

20

Parallel Replication

- Introduction and Motivation
- Problem Statement
- Design
- Performance Evaluation
- Conclusion & Future Work

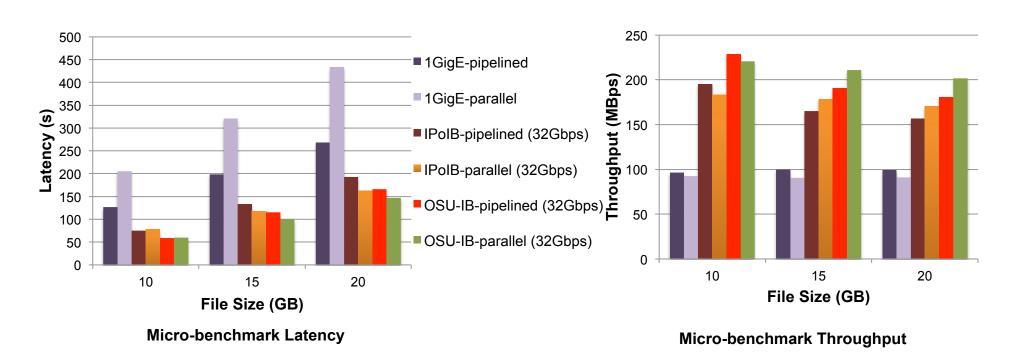
Experimental Setup

Hardware

- Intel Westmere (Cluster A)
 - Each node has 8 processor cores on 2 Intel Xeon 2.67 GHz Quadcore CPUs, 12 GB main memory, 160 GB hard disk
 - Network: 1GigE, IPoIB, and IB-QDR (32Gbps)
- Intel Westmere with larger memory (Cluster B)
 - Nodes in this cluster has same configuration as Cluster A; 24GB
 RAM
 - 8 storage nodes with three 1 TB HDD per node
 - Network: 1GigE, 10GigE, IPolB and IB-QDR (32Gbps)

Software

- Hadoop 0.20.2, HBase 0.90.3 and JDK 1.7
- Yahoo! Cloud Serving Benchmark (YCSB)

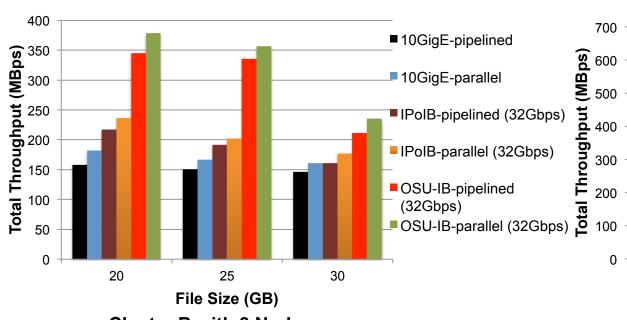


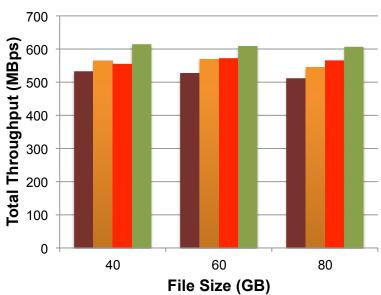
- Introduction and Motivation
- Problem Statement
- Design
- Performance Evaluation
 - Micro-benchmark level evaluations
 - Evaluations with TestDFSIO
 - Evaluations with TeraGen
 - Integration with HBase (TCP/IP)
- Conclusion & Future Work

Evaluations using Micro-benchmark

- Cluster A with 8 HDD DataNodes
 - 15% improvement over IPoIB (32Gbps)
 - 12.5% improvement over OSU-IB (32Gbps)

For 1GigE, NIC bandwidth is a bottleneck Improvement for larger data size

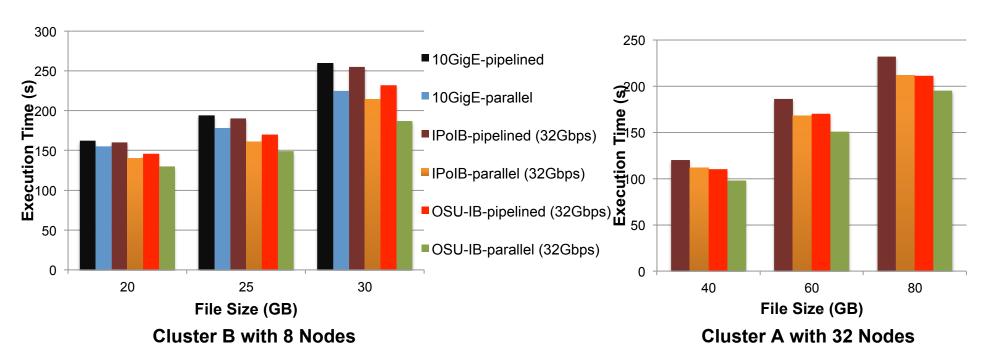



- Introduction and Motivation
- Problem Statement
- Design
- Performance Evaluation
 - Micro-benchmark level evaluations
 - Evaluations with TestDFSIO
 - Evaluations with TeraGen
 - Integration with HBase (TCP/IP)
- Conclusion & Future Work

Evaluations using TestDFSIO

Cluster A with 32 Nodes

- Cluster B with 8 Nodes
- Cluster B with 8 HDD DataNodes
 - 11% improvement over 10GigE
 - 10% improvement over IPolB (32Gbps)
 - 12% improvement over OSU-IB (32Gbps)
- Cluster A with 32 HDD DataNodes
 - 8% improvement over IPoIB (32Gbps)
 - 9% improvement over OSU-IB (32Gbps)



- Introduction and Motivation
- Problem Statement
- Design
- Performance Evaluation
 - Micro-benchmark level evaluations
 - Evaluations with TestDFSIO
 - Evaluations with TeraGen
 - Integration with HBase (TCP/IP)
- Conclusion & Future Work

Evaluations using TeraGen

- Cluster B with 8 HDD DataNodes
 - 16% improvement over IPoIB (32Gbps), 10GigE and OSU-IB (32Gbps)
- Cluster A with 32 HDD DataNodes
 - 11% improvement over IPoIB (32Gbps) and OSU-IB (32Gbps)



- Introduction and Motivation
- Problem Statement
- Design
- Performance Evaluation
 - Micro-benchmark level evaluations
 - Evaluations with TestDFSIO
 - Evaluations with TeraGen
 - Integration with HBase (TCP/IP)
- Conclusion & Future Work

Evaluations using YCSB

- HBase Put Operation with 4 Region Servers in Cluster A
 - 17% improvement over IPoIB (32Gbps)
 - 10% improvement over OSU-IB (32Gbps)

- Introduction and Motivation
- Problem Statement
- Design using Hybrid Transports
- Performance Evaluation
- Conclusion & Future Work

Conclusion and Future Works

- Introduced Parallel Replication in both Socket-based and RDMA-based design of HDFS over InfiniBand
- Comprehensive Evaluation regarding the impact of Parallel Replication on different Hadoop benchmarks
- Integration with HBase leads to performance improvement of HBase Put operation
- Identify architectural bottlenecks of higher level HDFS designs and propose enhancements to work with high performance communication schemes
- Integration with other Hadoop components designed over InfiniBand

Tutorial on August 23, 2013 (8:30 – 12:30)

Accelerating Big Data Processing with Hadoop and Memcached Using High Performance Interconnects: Opportunities and Challenges

бу

D. K. Panda and Xiaoyi Lu

The Ohio State University



Thank You!

{islamn, luxi, rahmanmd, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

Hadoop Web Page

http://hadoop-rdma.cse.ohio-state.edu/

