^AUCL

Low Latency Scheduling Algorithm for Shared Memory Communications over Optical Networks

Muhammad Ridwan Madarbux, Anouk Van Laer, Philip M. Watts

Electronic and Electrical Engineering Department University College London

Pioneering research and skills

MOTIVATION

- Scaling chip multiprocessors (CMP) is increasing thermal issues
 - negative impact on performance
- Photonic NoCs have been shown to have lower power consumption

UCL

MOTIVATION

- Latency in switched photonic networks is dominated by scheduling
 - Request, arbitration and grant
- Scheduling generates a significant overhead in shared memory systems
 - 8B control messages
 - 16-256B data messages

CIRCUIT SWITCHING FOR SHARED MEMORY

Reduce scheduling Circuits • latency by circuit switching for large flows of data 0.8 blackscholes Proportion of Packets on between two cores canneal dedup Maximise proportion of ٠ ferret 0.6 messages on circuits to fluidanimate minimise contention and freqmine improve latency streamcluster 0.4 Reduces for circuit ---swaptions periods >100 clock vips cycles 0.2 10² 10¹ 10^{3} Backup network required Circuit Period (clock cycles)

This work proposes a new scheduling algorithm which intelligently uses information from the cache hierarchy to setup optical circuits

SIMULATION PARAMETERS

COMMON COMMUNICATION PATTERNS IN THE MESI COHERENCE PROTOCOL

5 messages Store Request

CACHE COHERENCE PROTOCOL BASED COMMUNICATION PATTERNS

LATENCY IMPROVEMENTS

LATENCY IMPROVEMENTS

Time taken per pattern

- BL Blackscholes CA – Canneal DE – Dedup
- FE Ferret

- FL Fluidanimate
- FR Freqmine
- ST Streamcluster
- SW Swaptions VI – Vips X2 – X264

Head latency per message

EFFECT OF CONTENTION

BL – Blackscholes CA – Canneal DE – Dedup FE - Ferret

- FL Fluidanimate
- FR Freqmine
- ST Streamcluster

SW – Swaptions VI – Vips X2 – X264

CONCLUSION

- We have proposed an algorithm that intelligently uses information from the cache hierarchy to setup optical paths
- The algorithm provides significant latency reductions of up to 70.6% for Swaptions
- Results shown are for on-chip networks. Larger networks with longer time of flight will benefit more from this algorithm
 - Examples: Multiple socket servers or rack-scale networks

FUTURE WORK

- Considering the implications of this algorithm on the energy consumption of the allocator and control circuits
- Looking at the performance of the algorithm for heavier traffic loads considering that PARSEC benchmarks lightly load the network
- Measuring the performance improvements in full system gem5 simulation

THANK YOU FOR YOUR ATTENTION