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MOTIVATION 

•  Scaling chip multi-
processors (CMP) is 
increasing thermal 
issues  
−  negative impact on 

performance 
 
 

•  Photonic NoCs have 
been shown to have 
lower power 
consumption 
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MOTIVATION 

•  Latency in switched photonic 
networks is dominated by 
scheduling 

–  Request, arbitration and grant 

•  Scheduling generates a 
significant overhead in shared 
memory systems  
–  8B control messages 
–  16-256B data messages 
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CIRCUIT SWITCHING FOR SHARED MEMORY 

•  Reduce scheduling 
latency by circuit switching 
for large flows of data 
between two cores 

•  Maximise proportion of 
messages on circuits to 
minimise contention and 
improve latency 
–  Reduces for circuit 

periods >100 clock 
cycles 

•  Backup network required 
 
 

This work proposes a new scheduling algorithm which intelligently uses 
information from the cache hierarchy to setup optical circuits 



SIMULATION PARAMETERS 
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CPU Memory Caches 

Interconnection network 

Benchmark 
PARSEC benchmark suites  

●   Blackscholes – Calculate price of options 
●   Canneal – Optimization of routing in chip design 
●  Dedup – Compression using data deduplication 
●  Ferret – Content similarity search server 
●   Fluidanimate – Simulates fluid for animations 
●  Freqmine – Data mining 
●  Streamcluster – Online clustering of input streams 
●  Swaptions – Calculates price of swaptions (MC) 
●  Vips – Image processing 
●   X264 – Video encoder  

●  32 cores @ 1.2 GHz 
●  Private L1 = 16 kB 
●  Shared L2 = 1 MB in total (distributed among the tiles) 
●  Cacheline size = 64B 
●  Cache coherence protocol = MESI 



COMMON COMMUNICATION PATTERNS IN THE 
MESI COHERENCE PROTOCOL 
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CACHE COHERENCE PROTOCOL BASED 
COMMUNICATION PATTERNS 
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LATENCY IMPROVEMENTS 
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LATENCY IMPROVEMENTS 

Time taken per pattern Head latency per message 

BL – Blackscholes  FL – Fluidanimate  SW – Swaptions  
CA – Canneal   FR – Freqmine   VI – Vips  
DE – Dedup   ST – Streamcluster  X2 – X264  
FE - Ferret 

70.6% 



EFFECT OF CONTENTION 

BL – Blackscholes  FL – Fluidanimate  SW – Swaptions  
CA – Canneal   FR – Freqmine   VI – Vips  
DE – Dedup   ST – Streamcluster  X2 – X264  
FE - Ferret 

4x 

< 2% 



CONCLUSION 

•  We have proposed an algorithm that intelligently 
uses information from the cache hierarchy to setup 
optical paths 

•  The algorithm provides significant latency 
reductions of up to 70.6% for Swaptions 

•  Results shown are for on-chip networks. Larger 
networks with longer time of flight will benefit more 
from this algorithm 

–  Examples: Multiple socket servers or rack-scale networks 

 



FUTURE WORK 

•  Considering the implications of this algorithm on 
the energy consumption of the allocator and 
control circuits 

•  Looking at the performance of the algorithm for 
heavier traffic loads considering that PARSEC 
benchmarks lightly load the network 

•  Measuring the performance improvements in full 
system gem5 simulation 
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