
Low Latency Scheduling Algorithm for Shared
Memory Communications over Optical Networks

Muhammad Ridwan Madarbux, Anouk Van Laer,
Philip M. Watts

Electronic and Electrical Engineering Department
University College London

MOTIVATION

•  Scaling chip multi-
processors (CMP) is
increasing thermal
issues
−  negative impact on

performance

•  Photonic NoCs have
been shown to have
lower power
consumption

Core	
 L1	

Shared	

L2	

O O O

O
O

O O O

O
XOp0cal	

Plane	

Chip	
 Mul0-­‐
Processor	
 	

Network	

Interface	

To	
 Op0cal	

Plane	

MOTIVATION

•  Latency in switched photonic
networks is dominated by
scheduling

–  Request, arbitration and grant

•  Scheduling generates a
significant overhead in shared
memory systems
–  8B control messages
–  16-256B data messages

request	

grant	

arbitra0on	

data	

Source
Core

Arbiter Destination
Core

CIRCUIT SWITCHING FOR SHARED MEMORY

•  Reduce scheduling
latency by circuit switching
for large flows of data
between two cores

•  Maximise proportion of
messages on circuits to
minimise contention and
improve latency
–  Reduces for circuit

periods >100 clock
cycles

•  Backup network required

This work proposes a new scheduling algorithm which intelligently uses
information from the cache hierarchy to setup optical circuits

SIMULATION PARAMETERS

Operating system

Kernel

CPU Memory Caches

Interconnection network

Benchmark
PARSEC benchmark suites

●  Blackscholes – Calculate price of options
●  Canneal – Optimization of routing in chip design
●  Dedup – Compression using data deduplication
●  Ferret – Content similarity search server
●  Fluidanimate – Simulates fluid for animations
●  Freqmine – Data mining
●  Streamcluster – Online clustering of input streams
●  Swaptions – Calculates price of swaptions (MC)
●  Vips – Image processing
●  X264 – Video encoder

●  32 cores @ 1.2 GHz
●  Private L1 = 16 kB
●  Shared L2 = 1 MB in total (distributed among the tiles)
●  Cacheline size = 64B
●  Cache coherence protocol = MESI

COMMON COMMUNICATION PATTERNS IN THE
MESI COHERENCE PROTOCOL

Time

Request
Response Unblock

L2 bank

L1 requesting
address

L1 requesting
address

L2 bank

Request

Request

Response
Unblock

L2 bank Response

Time

L1*
caching
address

L1
requesting

address

L1
requesting

address

L1
requesting

address

L2 bank

3 messages Store Request

5 messages Store Request

CACHE COHERENCE PROTOCOL BASED
COMMUNICATION PATTERNS

Communica0on	
 PaEerns	

LATENCY IMPROVEMENTS

Source	

Core	

Source	

Core	

Arbiter	
 Arbiter	
 Des/na/on	

Core	

Des/na/on	

Core	

REQ	
 REQ	

RES	

RES	

UNB	

UNB	

Arbitra/on	
 per	

message	

Arbitra/on	
 per	

pa;ern	

TIME	

request	

grant	

arbitra0on	

data	

request	

arbitra0on	

grant	

data	

data	

request	

arbitra0on	
 grant	

grant	

request	

arbitra0on	

data	

data	

data	

02 03 04 05

07 08 09 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24 25 26

28 29 30 31

06

32

01

27

Path Allocator

Optical Switch
67%	

Overhead	

Savings	

LATENCY IMPROVEMENTS

Time taken per pattern Head latency per message

BL – Blackscholes FL – Fluidanimate SW – Swaptions
CA – Canneal FR – Freqmine VI – Vips
DE – Dedup ST – Streamcluster X2 – X264
FE - Ferret

70.6%

EFFECT OF CONTENTION

BL – Blackscholes FL – Fluidanimate SW – Swaptions
CA – Canneal FR – Freqmine VI – Vips
DE – Dedup ST – Streamcluster X2 – X264
FE - Ferret

4x

< 2%

CONCLUSION

•  We have proposed an algorithm that intelligently
uses information from the cache hierarchy to setup
optical paths

•  The algorithm provides significant latency
reductions of up to 70.6% for Swaptions

•  Results shown are for on-chip networks. Larger
networks with longer time of flight will benefit more
from this algorithm

–  Examples: Multiple socket servers or rack-scale networks

FUTURE WORK

•  Considering the implications of this algorithm on
the energy consumption of the allocator and
control circuits

•  Looking at the performance of the algorithm for
heavier traffic loads considering that PARSEC
benchmarks lightly load the network

•  Measuring the performance improvements in full
system gem5 simulation

THANK YOU FOR YOUR ATTENTION

