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Definition of Problem

* The Network

* An NoC constructed as a grid of routers (switches) where each router is B
connected by unidirectional links to its four neighbors and to a local computlng
core
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Definition of Problem: Network Contenti

» In order to facilitate all-to-all connectivity, multiplexing is necessary
the contentions inherent in the network —_—

* Types of contention on the network
* Link Contention: only one connection can use a waveguide per multiplexing slot
 Sender Contention: a node on the network can only send one message per multiplexing slot
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* Receiving Contention: a node on the network can only receive one message per multiple’
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Multiplexing Strategies

* Strategy 1: Time Division Multiplexing (TDM)

* Divide the communication paths needed for all-to-all connectivity
amongst multiple discrete time slots

* Example (2x3 network):

Time slot 1 of 2
1 sends to 2
2 sends to 3
3 sends to 1

Time slot 2 of 2
1 sends to 3

2 sends to 1
3 sends to 2




Multiplexing Strategies (in case of optics) =
* Strategy 2: Wavelength Division Multiplexing (WDM) &

* Divide the communication paths needed for all-to-all connectivity
amongst multiple wavelengths (simultaneously)

* Example (2x3 network):

Wavelenqgth 1 of 2
1 sends to 2

2 sends to 3 o T R
3sendsto1 RN N

Wavelength 2 of 2 .
1sendsto3d | ol A !
2 sends to 1
3 sends to 2




Multiplexing Strategies

* Strategy 3: Space Division Multiplexing

* Divide the communication paths needed for all-to-all connectivity
amongst multiple physical planes/links (in case of optics, waveguides)

* Example (2x3 network):

Plane/link 1 of 2
1 sends to 2

2 sends to 3
3 sends to 1

Plane/link 2 of 2
1 sends to 3

2 sends to 1
3 sends to 2




Combining Multiplexing Strategies

* Consider a 1x6 network with the following

schedule
* g multiplexing slots

* IfTDM is the sole multiplexing method used, 9
time slots are needed

* If 3 wavelengths are available to use, only 3 time
slots are needed

* If 3 wavelengths and 3 waveguides are available
to use, only 1 time slot is needed

* Combining multiple multiplexing
strategies with TDM reduces number of
time slots and communication latency
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Problem Description

* In this work, we propose creating a reqular static schedule for an axi
network by systematically dividing the connections into slots of valid==8
network configurations S

* Regularity in scheduling is useful for 3 reasons
* Design automation

* Proof of scalability

* Low run time of scheduling algorithm

.l,

* Regularity of scheduling will be necessary for our future wq
efficiently combining slots into TDM, WDM and SDM. /
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Baseline: Theoretical Minimal Scheduling

* Using the bisectional width of the network, we
can determine that for an nxn network, the
minimal multiplexing degree is given as follows

71

i n-— z . i — :
* Forniseven: ™ 5 senders must communicate with ™ - W W
receivers via n links

7 ~ 4 minimal multiplexing degree [nqg]es

* Similar analysis can be done for odd-sized networks

* The theoretical min will be used as a baseline D L] ¥
against our systematic multiplexing algorithm O




1. G. Hendry, J. Chan, S. Kamil, L. Oliker, J. Shalf, L. Carloni, and K. Bergman, “Silicon Nanophotonic Network-on-Chip
using TDM Arbitration,” Proceedings of IEEE Symposium on High-Performance Interconnects, 2010.

Previous work

In previous work, *Hendry et al. created the proposed optical network a NC
developed a nondeterministic algorithm to create a static scheduling of
time slots to achieve all-to-all connectivity

* Ran experiments with real benchmarks to determine that their circuit switched
network was a viable alternative to a packet switched network

This work used a Genetic Algorithm, which uses heuristics iteratively to
densely pack the network with non-conflicting connections

No regularity in how connections are chosen

No guarantee on scalability of solution

Slow run time to determine their algorithm’s best schedule

Hard to combine multiplexing strategies




Motivation: Theoretical Minimal Scheduh
vs. Results of Prior Work

* The following table shows the theoretical minimum scheduling of a 4x
8x8 network next to the multiplexing degree proposed in previous Work1 |

Theoretical Min. 16 54 128
Genetic Algorithm 18 61 142

4
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* There is a gap in terms of multiplexing slots between the theoretical minimum
genetic algorithm |

* *The genetic algorithm, due to its run time was only run on these 3 netwo /
¥

X
* Our goalis tolessen the gap, and provide a regular way of scalm, 2l lution'

networks

1. G. Hendry, J. Chan, S. Kamil, L. Oliker, J. Shalf, L. Carloni, and K. Bergman, “Silicon Nanophotonic Network-on-Chip
using TDM Arbitration,” Proceedings of IEEE Symposium on High-Performance Interconnects, 2010.
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Scheduling method: Connection Patterns“’

* Divide connections into connection patterns, designated P

» Connection pattern P, are those connections which have identical offsets, <a,b>==%

—
-~

* Idea: Use reqgularity the of connection patterns to systematically
create a schedule for all-to-all communication




1D Connection Patterns (a=0 or b=0)

* Theorem: All 1D connections in connection pattern P, , can be scheduled in =8
min(a,n-a) slots &

* Note: “slots” may refer to TDM, WDM, or SDM multiplexing slots
* Similar idea for 1D patternsin P, o
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in max(mln(a n-a),min(b,n-b)) slots
* Note: “slots” may refer to TDM, WDM, or SDM multiplexing slots
* 1D connections also satisfy this equation
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Connection Profile

We define U to be the union of all connection
patterns, and name it the connection profile

Pictorially, we represent the connection profile by
grid on the right for a 6x6 grid network

To represent the multiplexing degree of each
connection pattern, we fill in the profile with the
corresponding values from our theorem

* Multiplexing degree of Pab= max(min(a,n-a),min(b,n-b))
Using this information, we can determine the

multiplexing degree for the trivial solution of
separately multiplexing each connection pattern
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Trivial Scheduling Solution

* By separately multiplexing each of the patterns, we can
achieve a multiplexing degree of 256 for a 6x6 mesh

* This solution is found by summing the multiplexing
degrees of each of the connection patterns in U

* The theoretical minimal scheduling of a 6x6 is 54
multiplexing slots, so we can do better

* Next step: combine connection patterns
together to lower the multiplexing degree of the
system




Combining Connection Patterns

* To lessen the multiplexing degree of the system, we define a Connectiofii

—

Group: G, , to be the union of the following 4 patterns N

: Ga,b & Pa,b U IDn—a,b U Pa,n—b U Pn—a,n-b: a>o, b>o
* We will ignore patterns where a = 0, or b = o for the time being

* Examples: G, ; and G, , for a 6x6 network
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Connection Groups

* Now we must show that patterns within a connection group are
disjoint

* From our definition of “valid network configuration”, we have the following
criteria for non-conflicting connections, and by extension connection patterns =

* No Link Conflicts: only one connection can use a waveguide at a time
* No Sender Conflicts: a node on the network can only send one message at a time
* No Receiving Conflicts: a node on the network can only receive one message at a ti

* Since we know connections within connection patterns do no
conflict, we only need to show that the connection patterns¢ r/
group do not conflict with each other ///
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Connection Groups

* No sending or receiving contention

R

* Example: G, , SN

0,1, = set of sending nodes of P, ,
P, p = Set of receiving nodes of P, ,
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Connection Groups

* No sending or receiving contention

* Example: G, ,
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Connection Groups

* No sending or receiving contention

R

* Example: G, , SN

0,1, = set of sending nodes of P, ,
P, p = Set of receiving nodes of P, ,
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Connection Groups

* No sending or receiving co

* Example: G, ,

ntention

Connections in P, ;

Connections in P, ,

Connections in P, ¢
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0,1, = set of sending nodes of P, ,
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Connection Groups

* No link contention 0 O
* Example: G, , - n
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Connection Groups

* No link contention

* Example: G, ,
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Connection Groups

* No link contention

* Example: G, ,
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Connection Groups

* No link contention

* Example: G, ,
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Connection Group based Scheduling

* By separately multiplexing each of the groups, we
can achieve a multiplexing degree of 55 for a 6x6
mesh

* Note that this solution does not yet account for the 1D
connections (where a=0, or b=0)

* |f we are able to schedule the 1D connections with
the others, then we can have a multiplexing degree
of 55 for a 6x6 mesh R

e Theoretical min: 54 > > max(min(a,n - a), min(
a=1 b=1

* Next step: combine 1D connections with the B ven
connection groups to realize this low multiplexing RS
degree T
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Combining 2D Connections with Connecti
Groups
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* Example 1: combining e e with G,,UG,,
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* Inthe case of a+1 =n/2, we combine P, U
P, ... with just G
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* Example 2: combining P
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The rest of the 1D connections

 We can schedule P UP UP U

P

* For n<6, we schedule these 1D connections in
separate slots from the rest of our schedule

n/2,0

) ) 0, n/2
in n/2 time slots

-n/2,0

0,-n/2

* Forn>6, we can schedule all 1D connections
with the 2D connection groups, so we do not
need to add any slots to our previous solution
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Connection Group based Scheduling, Revi

[nzll ni: max(min( a,n —a), min(b,n — b))] + g*

a=1 b=1

"Add only if n is even

3 2
no_n L 2 ifnis even
3 2 3

, if nis even

L ifnis odd




Results: Multiplexing Degree Revisited

Theoretical Minimum 54
Genetic Algorithm 61

Deterministic Solution 58

* * No results given for larger networks by previous work?

* **\WWe can obtain results which scale by O(n3) for n >> 10, dl'J'{ th
nature of our scheduling algorithm /i

* Theoretical minimum scales by O(n3)

1. G. Hendry, J. Chan, S. Kamil, L. Oliker, J. Shalf, L. Carloni, and K. Bergman, “Silicon Nanophotonic Network-on-Chip
using TDM Arbitration,” Proceedings of IEEE Symposium on High-Performance Interconnects, 2010.



Future Work

* Combine Multiplexing Strategies

* We can leverage the reqularity of our schedule and our x-y routing to develop = NS
method of efficiently utilizing TDM in combination with WDM and SDM ~~

* Why will this work?

* We can leverage regularity to limit the overhead to utilize WDM efficiently
« Each wavelength needs several microrings within a router tuned to it

* More wavelengths = more microrings = more complexity = more cost 7
.‘,'{'

* We can divide the all-to-all scheduling into groups with equal multlplel }
degrees, then split them between planes/waveguides T
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Any Questions?

Expected Graduation Date (M.S.): December 2013/","
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