# Deterministic Multiplexing of NoC on Grid CMPs

JOHN CARPENTER RAMI MELHEM AUGUST 21, 2013

#### Overview

- Definition of problem
- Multiplexing strategies
- Previous works
- Motivation
- Solution to Problem
- Results

#### Definition of Problem

#### The Network

 An NoC constructed as a grid of routers (switches) where each router is connected by unidirectional links to its four neighbors and to a local computing core





Sample circuit switch connections between computing elements

ComputingCore

#### Definition of Problem: Network Contention

- In order to facilitate all-to-all connectivity, multiplexing is necessary due to the contentions inherent in the network
  - Types of contention on the network
    - Link Contention: only one connection can use a waveguide per multiplexing slot
    - Sender Contention: a node on the network can only send one message per multiplexing slot
    - Receiving Contention: a node on the network can only receive one message per multiplexing sl
- Using Multiplexing, we can achieve all-to-all connectivity by creating 'slots of valid network configurations on the network
   A valid network configurations as set of the network and be realized in one
  - multiplexing size on the network without contention

# Multiplexing Strategies

- Strategy 1: Time Division Multiplexing (TDM)
  - Divide the communication paths needed for all-to-all connectivity amongst multiple <u>discrete time slots</u>
  - Example (1x3 network):

#### Time slot 1 of 2

1 sends to 2

2 sends to 3

3 sends to 1

#### Time slot 2 of 2

1 sends to 3

2 sends to 1

3 sends to 2



# Multiplexing Strategies (in case of optics)

- Strategy 2: Wavelength Division Multiplexing (WDM)
  - Divide the communication paths needed for all-to-all connectivity amongst multiple <u>wavelengths</u> (simultaneously)
  - Example (1x3 network):

#### Wavelength 1 of 2

1 sends to 2

2 sends to 3

3 sends to 1

#### Wavelength 2 of 2

1 sends to 3

2 sends to 1

3 sends to 2



# Multiplexing Strategies

- Strategy 3: Space Division Multiplexing
  - Divide the communication paths needed for all-to-all connectivity amongst multiple physical planes/links (in case of optics, waveguides)
  - Example (1x3 network):

#### Plane/link 1 of 2

1 sends to 2

2 sends to 3

3 sends to 1

#### Plane/link 2 of 2

1 sends to 3

2 sends to 1

3 sends to 2



# Combining Multiplexing Strategies

- Consider a 1x6 network with the following schedule
  - 9 multiplexing slots
  - If TDM is the sole multiplexing method used, 9 time slots are needed
  - If 3 wavelengths are available to use, only 3 time slots are needed
  - If 3 wavelengths and 3 waveguides are available to use, only 1 time slot is needed
- Combining multiple multiplexing strategies with TDM reduces number of time slots and communication latency



# **Problem Description**

- In this work, we propose creating a <u>regular</u> static schedule for an <u>nxn</u> network by systematically dividing the connections into slots of valid network configurations
- Regularity in scheduling is useful for 3 reasons
  - Design automation
  - Proof of scalability
  - Low run time of scheduling algorithm
- Regularity of scheduling will be necessary for our future work of efficiently combining slots into TDM, WDM and SDM.

#### Baseline: Theoretical Minimal Scheduling

- Using the bisectional width of the network, we can determine that for an nxn network, the minimal multiplexing degree is given as follows
  - For n is even:  $n^*\frac{n}{2}$  senders must communicate with  $n^*\frac{n}{2}$  receivers via n links

$$\frac{\left(n*\frac{n}{2}\right)*\left(n*\frac{n}{2}\right)}{n} = \frac{n^3}{4} \text{ minimal multiplexing degree}$$

- Similar analysis can be done for odd-sized networks
- The theoretical min will be used as a baseline against our systematic multiplexing algorithm



#### Previous work

- In previous work, ¹Hendry et al. created the proposed optical network and developed a nondeterministic algorithm to create a static scheduling of time slots to achieve all-to-all connectivity
  - Ran experiments with real benchmarks to determine that their circuit switched network was a viable alternative to a packet switched network
- This work used a Genetic Algorithm, which uses heuristics iteratively to densely pack the network with non-conflicting connections
  - No regularity in how connections are chosen
  - No guarantee on scalability of solution
  - Slow run time to determine their algorithm's best schedule
  - Hard to combine multiplexing strategies

# Motivation: Theoretical Minimal Scheduling vs. Results of Prior Work

 The following table shows the theoretical minimum scheduling of a 4x4, 6x6, and 8x8 network next to the multiplexing degree proposed in previous work<sup>1</sup>

| Size of Network   | 4X4 | 6x6 | 8x8 | 9x9 | 10X10 |
|-------------------|-----|-----|-----|-----|-------|
| Theoretical Min.  | 16  | 54  | 128 | 180 | 250   |
| Genetic Algorithm | 18  | 61  | 142 | *   | *     |

- There is a gap in terms of multiplexing slots between the theoretical minimum scheduling a genetic algorithm
- \* The genetic algorithm, due to its run time was only run on these 3 network sizes
- Our goal is to lessen the gap, and provide a <u>regular</u> way of scaling our solution to networks

# Scheduling method: Connection Patterns

- Divide connections into connection patterns, designated P<sub>a,b</sub>
  - Connection pattern P<sub>a,b</sub> are those connections which have identical <u>offsets</u>, <a,b>
- Idea: Use regularity the of connection patterns to systematically create a schedule for all-to-all communication



#### 1D Connection Patterns (a=o or b=o)

- Theorem: All 1D connections in connection pattern P<sub>a,o</sub> can be scheduled in min(a,n-a) slots
  - Note: "slots" may refer to TDM, WDM, or SDM multiplexing slots
  - Similar idea for 1D patterns in P<sub>o,b</sub>

#### P<sub>3,400</sub> sscheeduling example in 31 slott



#### 2D Connection Patterns (a>o and b>o)

- <u>Theorem</u>: Generally, all connections in connection pattern P<sub>a,b</sub> can be scheduled in max(min(a,n-a),min(b,n-b)) slots
  - Note: "slots" may refer to TDM, WDM, or SDM multiplexing slots
  - 1D connections also satisfy this equation

P<sub>3,2</sub> scheduling example in 3 slotts



#### Connection Profile

- We define U to be the union of all connection patterns, and name it the connection profile
- Pictorially, we represent the connection profile by grid on the right for a 6x6 grid network
- To represent the multiplexing degree of each connection pattern, we fill in the profile with the corresponding values from our theorem
  - Multiplexing degree of  $P_{a,b} = max(min(a,n-a),min(b,n-b))$
- Using this information, we can determine the multiplexing degree for the trivial solution of separately multiplexing each connection pattern



#### Trivial Scheduling Solution

 By separately multiplexing each of the patterns, we can achieve a multiplexing degree of 256 for a 6x6 mesh

- This solution is found by summing the multiplexing degrees of each of the connection patterns in U
- The theoretical minimal scheduling of a 6x6 is 54
   multiplexing slots, so we can do better
- Next step: combine connection patterns together to lower the multiplexing degree of the system



#### Combining Connection Patterns

- To lessen the multiplexing degree of the system, we define a <u>Connection</u> <u>Group</u>: G<sub>a,b</sub> to be the union of the following 4 patterns

  - G<sub>a,b</sub> = P<sub>a,b</sub> U P<sub>n-a,b</sub> U P<sub>n-a,n-b</sub> U P<sub>n-a,n-b</sub>: a > o, b > o
     We will ignore patterns where a = o, or b = o for the time being
  - Examples:  $G_{2,1}$  and  $G_{3,1}$  for a 6x6 network







Connections in P<sub>3,1</sub> Connections in P<sub>-3.1</sub> Connections in P<sub>3-5</sub> Connections in P<sub>-3-5</sub>

- Now we must show that patterns within a connection group are disjoint
  - From our definition of "valid network configuration", we have the following criteria for non-conflicting connections, and by extension connection patterns
    - No Link Conflicts: only one connection can use a waveguide at a time
    - No Sender Conflicts: a node on the network can only send one message at a time
    - No Receiving Conflicts: a node on the network can only receive one message at a time
- Since we know connections within connection patterns do not conflict, we only need to show that the connection patterns of a group do not conflict with <u>each other</u>

- No sending or receiving contention
  - Example: G<sub>2,1</sub>





- No sending or receiving contention
  - Example: G<sub>2,1</sub>





- No sending or receiving contention
  - Example: G<sub>2,1</sub>





- No sending or receiving contention
  - Example: G<sub>2,1</sub>





- No link contention
  - Example:  $G_{2,1}$





- No link contention
  - Example: G<sub>2,1</sub>





- No link contention
  - Example:  $G_{2,1}$









- No link contention
  - Example:  $G_{2,1}$











#### Connection Group based Scheduling

- By separately multiplexing each of the groups, we can achieve a multiplexing degree of 55 for a 6x6 mesh
  - Note that this solution does not yet account for the 1D connections (where a=o, or b=o)
- If we are able to schedule the 1D connections with the others, then we can have a multiplexing degree of 55 for a 6x6 mesh
  - Theoretical min: 54
- Next step: combine 1D connections with the connection groups to realize this low multiplexing degree



$$\sum_{a=1}^{n-1} \sum_{b=1}^{n-1} \max(\min(a, n-a), \min(a, n-a), \min$$

Croups

Groups

Groups

• In general, we combine  $P_{o,a} U P_{o,a-n}$  with  $G_a$ 

• Example 1: combining  $P_{0,1} U P_{0,-5}$  with  $G_{2,1} U G_{4,1}$ 

• In the case of a+1 = n/2, we combine  $P_{o,a}$  U  $P_{o,a-n}$  with <u>just</u>  $G_{a+1,1}$ 

• Example 2: combining  $P_{0,2} \cup P_{0,2}$  with  $G_{3,1} (6x_{5,-5})$ 

Cannot schedule P<sub>n/2,0</sub> l
 P<sub>o,-n/2</sub> with 2D connection





#### The rest of the 1D connections

- We can schedule  $P_{n/2,o}$  U  $P_{o, n/2}$  U  $P_{-n/2,o}$  U  $P_{o,-n/2}$  in n/2 time slots
  - For n≤6, we schedule these 1D connections in separate slots from the rest of our schedule
  - For n>6, we can schedule all 1D connections with the 2D connection groups, so we do not need to add any slots to our previous solution



# Connection Group based Scheduling, Revised

$$\left(\sum_{a=1}^{n-1} \sum_{b=1}^{n-1} \max(\min(a, n-a), \min(b, n-b))\right) + \frac{n^*}{2}$$
\*Add only if n is even
$$= \frac{n^3}{3} - \frac{n^2}{2} + \frac{2n}{3}, \text{ if n is even}$$

$$= \frac{n^3}{3} - \frac{n^2}{2} - \frac{n}{3} - \frac{1}{2}, \text{ if n is odd}$$

n>6

$$\sum_{a=1}^{n-1} \sum_{b=1}^{n-1} \max(\min(a, n-a), \min(b, n-b))$$

$$= \frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6} \text{, if n is even}$$

$$= \frac{n^3}{3} - \frac{n^2}{2} - \frac{n}{3} - \frac{1}{2} \text{, if n is odd}$$



# Results: Multiplexing Degree Revisited

| Size of Network        | 4×4 | 6x6 | 8x8 | 9x9 | 10X10  |
|------------------------|-----|-----|-----|-----|--------|
| Theoretical Minimum    | 16  | 54  | 128 | 180 | 250    |
| Genetic Algorithm      | 18  | 61  | 142 | *   | *      |
| Deterministic Solution | 16  | 58  | 140 | 199 | 280 ** |

- \* No results given for larger networks by previous work¹
- \*\* We can obtain results which scale by O(n³) for n >> 10, due to the system nature of our scheduling algorithm
  - Theoretical minimum scales by O(n³)

#### Future Work

- Combine Multiplexing Strategies
  - We can leverage the regularity of our schedule and our x-y routing to develop a method of efficiently utilizing TDM in combination with WDM and SDM
- Why will this work?
  - We can leverage <u>regularity</u> to limit the overhead to utilize WDM efficiently
    - Each wavelength needs several microrings within a router tuned to it
    - More wavelengths = more microrings = more complexity = more cost
  - We can divide the all-to-all scheduling into groups with equal multiplexing degrees, then split them between planes/waveguides

# Thank You Any Questions?

Expected Graduation Date (M.S.): December 2013

Looking for jobs!