
Minimizing Delay in
Shared Pipelines

Ori Rottenstreich (Technion, Israel)

Joint work with
Isaac Keslassy (Technion, Israel)

Yoram Revah, Aviran Kadosh (Marvell Israel)

Pipeline Sharing for H.264
 video-compression standard

2

9 profiles with 21 features are organized

in 9 pipelines in a 9x9 multicore

scalability problem:
more profiles, more features

 more cores

Pipeline Sharing for H.264
 video-compression standard

3

10 9 8 4 1

11 12 13 14 21

16 17 18 19 20

15 14 13 7 6

1 2 3 4 5

9 profiles with 21 features are organized

in 9 pipelines in a 9x9 multicore

Pipeline Sharing: The 9 profiles are
serviced by one of two possible

pipelines in a smaller 5x5 multicore

•  Regular architecture, without pipeline sharing:

o  3 pipelines for the k=3 (uniformly distributed) packet types with N=8 cores
o  Average delay of T=(3+2+3)/3≈2.67 time slots

• With pipeline sharing:

o 2 pipelines for the k=3 packet types with only N=6 cores
o Average delay of T=(4+2+4)/3≈3.33 time slots

o Tradeoff: Less cores, larger average delay

Another
Pipeline Sharing Example

4

•  Traffic:
o  There are k packet types with known probabilities, each requires to
 perform tasks among {1, …, r } possible tasks
o  Example: Type 1 w.p. p1=0.6 requires tasks S1={1,2,3} and

 Type 2 w.p. p2=0.4 requires tasks S2={1,4}

• Pipeline sharing:
o A limited number of N homogeneous cores is given. Each core can serve any task
o The cores should be divided into pipelines, each serves one or more packet types
o The delay of a packet equals the length of its pipeline

• Optimization Problem:
o Divide the N cores into pipelines, such that the average delay is minimized
o For a given N, we denote by TOPT(N) the minimal possible average delay

Model and Problem Definition

5

Outline

Ø Introduction and Problem Definition
Ø General Properties
Ø Optimal Algorithm for a Special Case
Ø Greedy Algorithm
Ø Experimental Results
Ø Summary

6

•  Property:
 (i) At least cores are required
 (ii) For all the optimal average delay satisfies

 (iii) for

General Properties

7

Number of cores (N)

Average delay
(TOPT(N))

(i)

(ii)

(iii)

•  Property: Let k be the number of packet types. Then,
 (i) Given an unlimited number of cores, the number of solutions with d

pipelines is given by where
 , is the Stirling number of the
 second kind of k,d
 (ii) The total number of solutions is

•  Example: Consider k=3 packet types
 There is a single solution with 1 pipeline:
 There are solutions with 2 pipelines:
 There is solution with 3 pipelines:
 The total number of solutions is

General Properties

8

•  Property: Assume that packet types can be partitioned into
two disjoint sets, i.e. they can be ordered s.t.

 Then, s.t. an optimal solution given N cores can be

obtained as the union of the two sets of pipelines in the optimal solutions
for packet types [1,m] with N0 cores and for packet types [(m+1),k] with
(N-N0) cores.

•  Proof Outline: Any pipeline in an optimal solution cannot
 serve tasks from both sets
 Otherwise, it could be partitioned into two smaller pipelines to reduce the

average delay.

Separability

9

Outline

Ø Introduction and Problem Definition
Ø General Properties
Ø Optimal Algorithm for a Special Case
Ø Greedy Algorithm
Ø Experimental Results
Ø Summary

10

•  We suggest an optimal algorithm for a special case of the sets of required tasks:
 for

•  Example: k=3,

•  The condition is equivalent to the requirement
•  Assume that are ordered s.t. for

•  Let be the sets of tasks served by the pipelines in an optimal solution

•  Proposition: The pipelines in an optimal solution satisfy
 , i.e. the pipelines in the solution are among the pipelines
in the input

Simple Case of the Required
Tasks: Si = [1,Xi]

11

•  Proposition: Assume that are ordered such that
 Then,

 (i) The packet types are served by an increasing order of pipelines.
 In particular, the packet types served by each pipeline form a subset
of consecutive packet types from the input.
 (ii) The last packet type is served by the last pipeline .

Simple Case of the Required
Tasks: Si = [1,Xi]

12

•  Let (for) be the minimal possible average
delay obtained in the service of the first i types with at most n cores. Let
 be the corresponding set of pipelines.

•  Proposition:
 (i) For

 (ii) For j that minimizes (i),

•  Algorithm:

o  In step i (for), calculate
o  Return: (optimal delay), (set of pipelines)
o  Complexity:

Simple Case of the Required
Tasks: Si = [1,Xi]

13

Outline

Ø Introduction and Problem Definition
Ø General Properties
Ø Optimal Algorithm for a Special Case
Ø Greedy Algorithm
Ø Experimental Results
Ø Summary

14

•  Idea: Start with a pipeline for each type, merge pairs of pipelines with common cores

•  Intuition: For each pair with common cores, we prefer to merge
o  More common cores
o  Less non-common cores
o  Low probability to be served by a pipeline in the pair

•  Marginal cost of a possible merging operation
o  x – expected increment in the average delay
o  y – decreased number of cores
o  Marginal cost of R=x/y

•  Algorithm: Until the required number of cores is obtained, merge pairs of pipelines with
minimal marginal cost R=x/y

•  Not necessarily optimal but very efficient on synthetic and real-life applications

Pipeline Merging Algorithm

15

p1
p2
p3

•  Synthetic Simulation Parameters:
o  We consider k=8 packet types
o  Tasks selected among r =10 possible tasks {1,…,r =10}
o  Each type requires a specific task w.p. 0.5 without any dependency

between different types or tasks
o  Two options for the packet types probabilities:

q  fixed prob. – all types w.p. 1/k = 0.125
q  variable prob. – geometrically decreasing probabilities
 of 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7 and 2-7

o  Results are based on the average of 103 iterations

Experimental Results

16

•  Effectiveness of the number of cores on the average delay in time slots. k=8 packet
types with r =10 possible tasks, each required w.p. 0.5 by each type. 103 iterations.

Experimental Results

17

Less cores
 ⇒ larger delay

A lower bound:
Average number of

tasks per type
10·0.5=5

Maximal observed total
number of tasks

•  Summary of the synthetic simulations. k=8 packet types with r =10 possible tasks,
each required w.p. 0.5 by each type. 103 iterations.

Experimental Results

18

16 cores instead of 60,
delay of 8.47 / 8.11 time

slots instead of ~5

A difference of less
than 2%

•  Possible Tasks: (1) Parsing, (2) Ingress interface attributes,
(3) Ingress ACL, (4) L2 bridging, (5) L3 routing, (6) L3 replication,
(7) MPLS switching, (8) header modification, (9) L2 replication,
(10) Egress interface resolution, (11) Egress ACL

Packet-processing Application

19

•  k=5 packet types w.p. (0.25, 0.15, 0.2, 0.3, 0.1) and r =11 possible tasks. The total
number of solutions is G(5) = 52. The greedy algorithm starts with 28 cores, then
reduces it to 24, 20, 15 and finally 11. It obtains the optimal delay in 16 out of 18
values of N.

Packet-processing Application

20

total number
of tasks

The greedy algorithm obtains
the optimal delay in 16 out of

18 values of N.

H.264 video-compression
standard

21

10 9 8 4 1

11 12 13 14 21

16 17 18 19 20

15 14 13 7 6

1 2 3 4 5

9 profiles with 21 features are organized

in 9 pipelines in a 9x9 multicore

Pipeline Sharing: The 9 profiles are
serviced by one of two possible

pipelines in a smaller 5x5 multicore

•  k=9 popular (uniformly-distributed) profiles (types) of the H.264 standard with r =21
supported features (tasks). Results are based on the greedy algorithm.

H.264 video-compression
standard

22

25 instead of
 75 cores,

delay larger by 64%
49% less cores,

delay larger by only 21%

total number
of features

Concluding Remarks

•  New approach of sharing pipelines to
reduce the number of required cores

•  Analysis of the optimal average delay

•  Optimal solution for

•  Greedy algorithm for the general case

22

Thank You

