BURSTING DATA BETWEEN DATA CENTERS – CASE FOR TRANSPORT SDN

Abhinava Sadasivarao, Sharfuddin Syed, Ping Pan, Chris Liou (Infinera) Inder Monga, Andrew Lake, Chin Guok – Energy Sciences Network (ESnet)

IEEE Hot Interconnects, August 2013

A multi-layer network

In Particular, Data Centers...

- Massive pool of compute and storage
- Network
 - Intra-DC to allow VM migration, HA, ...
 - Inter-DC over WAN for replication, delivery, ...

Data Center – Packet World

- Intra-DC programmability
 - Lot of prior work done here [Portland][VL2]
 - OpenFlow making datacenter switches programmable easier
 - Centralized control logic can make these switches cheaper through simpler hardware (\$\$\$)
 - Decoupled data and control plane along with switches built with cheaper GbE/FCoE ports
- Inter-DC programmability
 - DC edge routers do L2/L3 tunneling
 - Packet layers are programmable OpenFlow is an example
 - Google's B4
 - Microsoft's SWAN

Data Center Interconnects – Transport View

- Providing high-capacity links for the edge DC routers
- However (traditional service providers)
 - If the inter-DC router links are overprovisioned, equally overprovisioned transport capacity required
 - These links are circuit-switched, statically allocated ahead of time
 - Operational are isolated by network layers
 - SP manage L3/L2 and L1 infrastructure separately Multiple set of people to operate them – Engineering, planning, provisioning
 - L2/L3 control planes don't talk to L1. Can't do end-to-end multilayer TE (Multi-vendor L1 control plane also is "in-theory")
- How can we make networks end-to-end programmable in a multi-layer, multi-vendor scenario?

Transport Paradigm is Different!

Packet World

- Connectionless
- Dynamic flows
- Inline control plane (NMS independent)
- Distributed CP solutions with numerous protocols

Transport World

- Connection (circuit) oriented
- Static pipes/configuration
- EMS/NMS + Cross-connect paradigm
- Nascent distributed CP (GMPLS), not inline

Historically, transport networks have been programmable by Centralized NMS/OSS.

Architectural Approach

- Abstract programmability between layers
 - Virtual overlay of Layer3/Layer2/Layer1
 - Central controller layer operates on this overlay
 - Program the "network fabric" than on a perelement basis

- Open Transport Switch (OTS)
 - OpenFlow-enabled, lightweight virtual switch representing a Transport Network Element
 - Capabilities exposed by OTS depends on the capabilities of the Transport element
 - Provides all the information needed to provision, control and monitor

OTS Subsystems: A high-level view

OTS Building Blocks (contd.)

Partition a hardware device

Virtualize a multi-domain transport network

Infinera and ESnet

Use Case: Multi-Layer Optimization

- Next-gen networks will drive need for multi-layer representation, topology computation & provisioning
- SDN approach facilitates orchestration across layers & domains

To Summarize...

Advantages

- Programmability of Transport Networks
- Virtualization of Transport Networks

Challenges

- Migration
- Co-existence with control plane
- Multi-vendor interface

THANK YOU!

asadasivarao at infinera dot com ssyed at infinera dot com