

The Buffer Size vs. Link Bandwidth Tradeoff in Lossless Networks Alex Shpiner, Eitan Zahavi, Ori Rottenstreich Hot Interconnects, August 2014

Mellanox

Mellanox Connect. Accelerate. Outperform.™

Background - Incast

Background - Pause Frame Flow Control

Background – Incast with Pause Frame Flow Control

Background – Congestion Spreading Problem

• Small buffers \Rightarrow Link pauses \Rightarrow Congestion spreading \Rightarrow Effective link bandwidth decrease

To deal with Incast we can:

- Increase buffers
- Increase link bandwidth

Tradeoff

This flow is also paused, since the pause control does not distinguish between flows.

Effective link bandwidth= Link bandwidth * %unpaused

Buffer-Bandwidth Tradeoff

Higher bandwidth allows:

- Faster buffer draining
- More link pausing, but achieving same effective bandwidth-
- \Rightarrow reduced buffering demand
 - to handle same incast scenario without congestion spreading
- Aim: evaluate the buffer-bandwidth tradeoff

Assumptions:

- Lossless network
- Congestion spreading avoidance is desired

Effective bandwidth = Link bandwidth * %unpaused

Evaluation Flow

Network Model

The most challenging workload:

8

Determining the Workload Parameters

- Assumption: output link is 100% utilized
 - Burst length = T/N-
- *T* = ?
 - Assume no congestion spreading.
 - It takes t = T/N to fill buffer of size B at arrival rate C and departure rate C/N:

$$\frac{T}{N} = \frac{B}{C - C/N} \Rightarrow T = \frac{N}{C(N)}$$

N senders

 $\frac{N^2B}{N-1}$

Effect of Buffer Size Reduction

Effect of Buffer Size Reduction with Link Acceleration

 $t_3 = -\frac{1}{\alpha}$ $t_2 = t_3$

Conclusions:

We can push more traffic. When the buffer is full, the link is in paused mode: $C_{eff} = \frac{\alpha C}{N}$ (congestion spreading)

 βB $\frac{\frac{1}{\alpha C/N}}{\beta B} - \frac{\alpha/N}{N}$

Buffer Saving vs. Link Acceleration Analysis

- When buffer is full, the link is in paused mode: $C_{effective} = \frac{\alpha C}{N}$
 - Paused mode ⇒ congestion spreading

• % paused =
$$\frac{t^2 - t^1}{T} = \cdots = \frac{N - \alpha - \beta(N - 1)}{\alpha(N - \alpha)}$$
 (1) $t_1 = \frac{\beta B}{C(1 - \alpha/N)}; t_2$

- By how much the buffer can be reduced (β) to avoid congestion spreading (% paused = 0)?
 - For %*paused* = 0, $\alpha = \frac{56 \text{ Gbps}}{40 \text{ Gbps}} = 1.4$, N = 2 (incast 2 \rightarrow 1):
 - $\beta = 0.6 \Rightarrow 40\%$ of buffer saving!!! \odot
 - For % paused = 0, $\alpha = \frac{56}{40} = 1.4$, N = 10 (incast $10 \rightarrow 1$): - $\beta = 0.95 \Rightarrow$ only 5% of buffer saving \otimes

Q

BB

Buffer Saving vs. Link Acceleration Analysis- cont.

BUT, we are allowed to pause the link, since we increased the link capacity.

•
$$C = \alpha C(1 - \% paused) + \frac{\alpha C}{N} \cdot \% p$$
 $d \Rightarrow \% paused = \frac{\alpha - 1}{\alpha - \frac{\alpha}{N}}$

- For $\alpha = 1.4$, N = 10: % pay Effective bandwidth = Link bandwidth * % unpaused

• Using (1) and (2)
$$\Rightarrow \beta = \frac{(N-\alpha)(2N-\alpha N-1)}{(N-1)^2}$$

- For
$$N = 10, \alpha = \frac{56}{40} = 1.4 \Rightarrow \beta = 53\%$$
!!!

- We can save 47% of buffer size with 40% of link rate increase, to get the same performance!
- And we can also push more data (56Gbps vs. 40Gbps)
 - With the congestion spreading cost

O

βB

(2)

Simulation Results

- Omnet++ simulator with Inet framework
- $2 \rightarrow 1$ Incast

Cout=40 Gbps Cout=56 Gbps

Asymptotic Analysis

For $\alpha \ge 2$ no buffering is required in the switches!

Multiple Incast Cascade Analysis

Last rank defines the workload parameters:

The analysis is similar to a single-rank case, but now the traffic arrives at rate αC

$\beta = 1 - \alpha * \% paused$

$\beta(\alpha = 1.4, \% paused = 32\%) = 0.55$

Conclusions

- We presented a method for analyzing the buffer-bandwidth tradeoff based on the Incast scenario in lossless networks.
- We can reduce switch buffer size, while still pushing the same traffic.
 - But, we pay with:
 - Congestion spreading (pause frames)
 - Buffers at the traffic sources (NICs) or suspending application.
- By increasing the links bandwidth, we can reduce the congestion spreading.
 - And push more traffic.
- We can save X% of buffer size with X% of link rate increase (for any incast).
- When increasing the links bandwidth by a factor of at least 2 ($\alpha \ge 2$) no buffering is required at the switches.
- The results hold also for the multiple incast cascade.

Thank You

