Reuse Distance Based Circuit Replacement in Silicon Photonic Interconnection Networks for HPC

HOTI 2014

<u>Ke Wen</u>, David Calhoun, Sébastien Rumley, Xiaoliang Zhu, Keren Bergman *Columbia University*

Lian-Wee Luo, Michal Lipson Cornell University

Yang Liu, Ran Ding, Tom Baehr-Jones, Michael Hochberg University of Delaware

SILL

Data Movement Challenge in HPC

 Performance of HPC systems is no longer only determined by sheer FLOPS numbers, but also data movement capabilities.

Gb/s: inter-chip/node communication

significantly increases

Joule/bit: 20 MW / 1 ExaFLOPs = 20 pJ/FLOP

Systems Impact with Si-photonic interconnect

 Optical Data Movement Beyond Wire Replacement

- Optics-enabled system architecture transformations:
 - distance-independent, cut-through, bufferless

Silicon Photonic Network Challenges

- 1. Rely on circuit switching (bufferless)
- \rightarrow Need to setup a lightpath before data transmission

- 2. Microrings are sensitive to temperature
- \rightarrow Need to thermally (re)-initialize microrings to work on correct wavelengths

How Often is an Optical Circuit Needed?

* Profiled based on *Mantevo*¹ mini-apps (64 nodes, 1 process/node)

Time Interval (µs) Between Two Requests for the Same Circuit

Reuse interval ≤ circuit setup time

Need to keep circuits alive

Circuit-Maintained Architecture

Each node maintains *X* circuits.

(towards frequently accessed destinations).

- 1 Circuit hit
 - \rightarrow time of flight
 - 2 Circuit miss
 - → penalty from circuit setup & thermal initialization
 - ③ Impossible to provision circuits towards all destinations
 - → Need to replace circuits upon misses

Similar performance model to cache! Similar management requirement to cache!

Architecture Design Space

 Goal: Maximize circuit hit rate in a cost effective way

Def: % of requests that see an available circuit immediately

- Design space:
 - Number of circuits per node (cache size)
 - Replacement policy

Inspired by Cache Modeling

• Reuse Distance captures how often a circuit is reused.

- Small reuse distance \rightarrow The circuit is often reused.
- Large reuse distance → The circuit will not be used in the near future.

Distribution of Circuit Reuse Distance in Apps

SIL

Replacement policy: Farthest Next Use (FNU)

Replace the circuit that is to be used in the farthest future

Observation is Not Enough, Prediction is What Matters

Prediction Method 1: Maximum Likelihood Prediction

Select reuse distance that has the highest frequency

single tower miniMD 60 81% N=64 50 % Circuit Requests 40 30 20 10 0 8 16 32 2 4 0 **Reuse Distance**

Prediction accuracy drops when node number scales

Prediction Method 1: Maximum Likelihood Prediction

Select reuse distance that has the highest frequency

- Repeated communication patterns due to loops/iterations
- Example:

RD samples observed over time for a circuit:

- Repeated communication patterns due to loops/iterations
- Example:

RD samples observed over time for a circuit:

961616122229616...Repeated
$$\bigvee$$
 \bigvee \downarrow tTransitions of RDs:bbb

- Repeated communication patterns due to loops/iterations
- Example:

Repeated

RD samples observed over time for a circuit:

- Repeated communication patterns due to loops/iterations
- Example:

RD samples observed over time for a circuit:

Upon prediction:

 Select the bin to which the current one has the highest transition probability

Prediction Accuracy Comparison

Max Likelihood Predictor

Temporal Transition Predictor

Replacement Policy Design and Comparison

- Base line: Least Recently Used (LRU) Based on Recent Past
- Minimum Reuse Score
 - Each circuit accumulates scores based on number of uses
 - Close-distance reuse has a higher score than long-distance ones
 - Replace the circuit that has the minimum score
- Farthest Next Reuse
 - Replace the circuit that is predicted to be used in the farthest future

Evaluation:

- Co-simulate circuit management with mini-apps
- Leverage application skeletons to reduce simulation time
- Analyze impact of # of circuits per node

Based on Prediction on Future

Based on Full Past

Circuit Switching of Patterned Data

SIL

Conclusion

- Silicon photonics can bring ultra-high bandwidth and energy efficiency to HPC in a cost-effective way.
- However, silicon photonics also has its challenges.
 - Circuit switching delay
 - Thermal sensitivity requires thermal initialization
 - Setup time couples with application reuse interval
- A circuit-maintained architecture mitigates such challenges.
 - Circuit reuses avoid setup penalty
 - Analogous to cache
 - Proposed prediction and replacement method show high circuit hit rate

Acknowledgement

- U.S. Department of Energy (DoE) National Nuclear Security Administration (NNSA) Advanced Simulation and Computing (ASC) program
- Sandia National Laboratories
- Portage Bay Photonics
- Gernot Pomrenke of the Air Force Office of Scientific Research