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Data Movement Challenge in HPC

» Performance of HPC systems is no longer only determined by sheer
FLOPS numbers, but also data movement capabilities.

Gb/s: inter-chip/node communication Joule/bit.
significantly increases 20 MW / 1 ExaFLOPs
= 20 pJ/FLOP
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Systems Impact with Si-photonic interconnect

Bandwidth | 10 Gb/s * 100
wavelengths
=1Tb/s

Efficiency |~ 1pJ/bit
(end-to-end)

Reconfigurable
photonic switches

Microring Modulator Array

Data
—

Microring Filters and

High density integration of Receivers Array
WDM Transceivers with CMOS



Optical Data Movement Beyond Wire Replacement

« Optics-enabled system architecture transformations:
- distance-independent, cut-through, bufferless

No conversion!

-1 — On chip

Short distance PCB P
— Long distance PCB £ -« &
— Optical link
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Silicon Photonic Network Challenges

1. Rely on circuit switching (bufferless)

: . TX 1 2 RX
- Need to setup a lightpath before data transmission

T
n*At Sync \\
//
Payload e
v t

2. Microrings are sensitive to temperature
- Need to thermally (re)-initialize microrings to work on correct wavelengths

Thermal (re)-initialization delay: ~10-100 ps | = | 10#*-10° CPU cycles
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How Often is; an Optical Circuit Needed?

* Profiled based on Mantevo’ mini-apps (64 nodes, 1 process/node)
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Reuse interval = circuit setup time
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Need to keep circuits alive




Circuit-Maintained Architecture

Each node maintains X circuits.
PE E pE E _pe | | (towards frequently accessed destinations).

— e @ Circuit hit
W g . .
— —— - time of flight
(C'rcu'ts / @ Circuit miss
PE :*\ FEonnection PE - —> penalty from circuit setup &
Mem Network Mem thermal initialization
| ® Impossible to provision circuits
PE - - PE E towards all destinations
Mem Mem - Need to replace circuits
| L\"E kN upon misses
Mem Me Mem"’ SiP interface

Similar performance model to cache!
Similar management requirement to cache!




Architecture Design Space

= (Goal: Maximize circuit hit rate in a cost effective
way /
Def: % of requests that see an available circuit immediately
= Design space:
— Number of circuits per node (cache size)
— Replacement policy



Inspired by Cache Modeling

* Reuse Distance captures how often a circuit is reused.
« Example: Independent p

| it
Circuits used by a node in order: Cmf,,' SJ B
C,A B D,BC /\////

|, \I PE _ !
B il Mem ‘

Reuse Distance (RD) = 4 for circuit C
D

= Small reuse distance = The circuit is often reused.
= Large reuse distance - The circuit will not be used in
the near future.




% Circuit Requests

% Circuit Requests

Distribution of Circuit Reuse Distance in Apps
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Replacement policy: Farthest Next Use (FNU)
» Replace the circuit that is to be used in the farthest future

Observation is Not Enough, Prediction is What Matters

LRU pick | |ast use l next use LRU: Least Recently Used
Replacement F | )T
Candidate 1 I ~ > t
IastA use | S nextA use
Replacement < - reuse distance = 5 FNU pick
Candidate 2 ’ ~ > 1
Ias’a‘use ' next use
Replacement p | 4

Candidate 3 ; ~ > {
Now (circuit miss occurs)
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Prediction Method 1: Maximum Likelihood Prediction

Select reuse distance that has the highest frequency

Prediction accuracy drops when node
number scales
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Prediction Method 1: Maximum Likelihood Prediction

Select reuse distance that has the highest frequency

Prediction accuracy drops when node
number scales
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Prediction Method 2: Temporal Transition Based Prediction

» Repeated communication patterns due to loops/iterations
= Example:
RD samples observed over time for a circuit:

9616161222229616...
Repeated VAV, oo it

Transitions of RDs: a a a a

14



Prediction Method 2: Temporal Transition Based Prediction

= Repeated communication patterns due to loops/iterations
= Example:
RD samples observed over time for a circuit:

9616161222229616...

Repeated (VAR \V 1
Transitions of RDs: b b b
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Prediction Method 2: Temporal Transition Based Prediction

= Repeated communication patterns due to loops/iterations
= Example:
RD samples observed over time for a circuit:

9616161222229616...

Repeated UANAAS St

Transitions of RDs: cC C CC
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Prediction Method 2: Temporal Transition Based Prediction

= Repeated communication patterns due to loops/iterations
= Example:
RD samples observed over time for a circuit:

9616161222229616...

Repeated _ it
Transitions of RDs:

Upon prediction:

» Select the bin to
which the current
one has the highest
transition probability
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Prediction Accuracy Comparison

- Max Likelihood Predictor

M Temporal Transition Predictor
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Replacement Policy Design and Comparison

- Base line: Least Recently Used (LRU) Based on Recent Past

« Minimum Reuse Score Based on Full Past

— Each circuit accumulates scores based on number of uses
— Close-distance reuse has a higher score than long-distance ones
— Replace the circuit that has the minimum score

« Farthest Next Reuse Based on Prediction on Future
— Replace the circuit that is predicted to be used in the farthest future

Evaluation:

« Co-simulate circuit management with mini-apps

* Leverage application skeletons to reduce simulation time
* Analyze impact of # of circuits per node

19



Circuit Hit Rate
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Physical Layer Demonstration
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Circuit Switching of Patterned Data
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Conclusion

= Silicon photonics can bring ultra-high bandwidth and
energy efficiency to HPC in a cost-effective way.

= However, silicon photonics also has its challenges.

= Circuit switching delay
= Thermal sensitivity requires thermal initialization

= Setup time couples with application reuse interval

= A circuit-maintained architecture mitigates such challenges.

= Circuit reuses avoid setup penalty
= Analogous to cache

= Proposed prediction and replacement method show high circuit hit
rate
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