Strategies for Mitigating TCAM
Space Bottlenecks

Kirill Kogan'?, Sergey Nikolenko3#, Patrick Eugster’>, Eddie Ruan®
Purdue University?
IMDEA NETWORKS?
Steklov Institute of Mathematics at St. Petersburg?
National Research University Higher School of Economics*
TU Darmstadt>

Cisco Systems®

Outline

* Current state of the art in packet classification

* Impact of invariants on representation efficiency
* Proposed solutions

e Evaluation and summary

* Ongoing and future work

Types of classifiers

1. Flow: forwarding (path+traffic aggregation)

2. Policies (represent economic models)

* Both can be represented as hierarchical packet match with set actions
e Can have different prioritization schemes, update requirements, etc.

Suggestion: decouple policies from flows

This paper is about efficient representation of policies.

Terminology

F —filter

= (100%, 001%) — A, A - action block

(1010,0001) — A;
C2{ Fy = (001x,010%) — A, C - class
P - policy

v
"
%)
=
—
o
I

Two policies are semantically equivalent if in both same actions are applied for any packet.

A policy P is order-independent if a policy P’ with any order of filters in P is semantically equivalent to P

SW-based vs. TCAM-based solutions (single instance)

SW-based: N = 3rules K = 2 fields prefixes—+ranges

(100%, 001+)
(1010, 0001) O(N) 0(log*=1N)
(001%, 111%) O(N®) O(logN)
TCAM-based: N = 3 rulesK = 3 prefixes ranges

(1L.3],[4,31],[1, 28]

(14,4],(2,30],[4,27]) Binary ~ 42+28+50=120

(_77 9_) _57 217 _37 18) Gray 24+8+32=64

Exploiting structural properties: Kogan et al, SIGCOMM 2014

Motivation and problem statement

e Can we optimize if a representation of classifier is optimal (memory perspective)?

* Invariant: Number of policies significantly smaller than number of " flows"
(10-100k vs. Gold, Silver, Bronze).

Class-per-Flow-Actions (CFA) requirement: (actions can be flow specific
(unsharable): rate-limit, shape or non-flow-specific (sharable) as set ToS);

Problem: Find a semantically equivalent representation of a given policy P
that share at least part of P's classifier among all flows with P configured.

Traditional attachment model and CFA

incoming

Packet p=(0001 11011 82) Actions PrOSZ
TCAM : :
on Sz granrrere memory * simple management of action blocks
1 o011 s, = ¢ Actions of S1 * independent from classifier structure
. . g C> Actions of S
TCAM 0 1 S * Independent from type of actions
lookup 10+ 000 o
v V2T C1 Actions of S Cons:
11* 011 S2 7] Co Actions of Sy |
0™ 1S ;/‘ - « TCAM memory proportional to #flows
Matched r " qex 4%+ o« ‘
ier 1 O 1T S

* To implement CFA - a policy instance is configured per flow
* S, is aflow identifier
Summary: N flows with P configured require |P| * N memory

Can we do it better by still implementing CFA?

Equivalent Actions Layout

Pros:
incoming p=(000, 101, P) Actions
packet TCAM | Offsets I(S+) memory optimal implementation of CFA
on S; 10* 000 P memory C1 Actions of S A . o
TCAM) O Actions offset || || G Actions of S * independent from classifier structure
lookup 1 011 P 02 Actions offset |(82) .
0 1 P G Actions of S, * Independent from action types

! |(82)+02 i
+
Matched ¢ ("5~ e 5)| G2 Actions of S, Cons:
filter] ' 1(S3)
C Actions of Sy e complex actions block management
|| CaActions of Sy | * implementation of start+offset logic

* Asingle classifier instance is configured in TCAM
* Every flow S;maintains a start offset of the flow-specific actions block I(S;)
An offset O; of any action block of a class C; in P from 1(S;) is the same for any flow S; with P configured

P is a policy identifier
Address of action block is 0; + I(S;)
Summary: N flows with P configured require only |P| memory

Can we simplify actions management and avoid start+offset logic?

Two Serial Lookups

incoming p=(000, 101, P)
packet TCAM |
on S,
10* Q00 P
TCAM 11* 011 P
lookup
0** 1 ek P
Matched .~ |~ ~ssx 4 Lo
atche | *k &k \
fer 0 O TP - C,
2" TCAM
lockup
Matched

filter

P is a policy identifier

Actions
memory

C1 Actions of S1
C, Actions of Sy

C1 Actions of S»

C, Actions of S»

N

/

A single classifier instance is configured in TCAM

The result of the first TCAM lookup is a class id C;.

Pros:

e asingle instance of a policy

* Independent from action types

* simple action block management

no start+offset logic

Cons:

* 1 TCAM entry per class

* depend on a classifier structure:

resdull;cs depend on sizes of classes and classification
widt

* two serial lookups

The second lookup is based on a class id C; and a flow id §;

Summary: N flows with P configured require only |P|+N. * N memory, N, is a number of classes in P

Relaxed CFA requirement cont.

m;sg;gg (000, 101, P) (000, 101, Sy) Actions * Two types of actions:

on S, TCAM_| | memory sharabLe (efl. s(et fieldts) -

10* Q00 P _ . ™ none snarable (e.g. rate-1imi

Two 11* 011 P />(C1 Actions of S1 and S, * ldea: split all filters of P = Py + Ps

arallel Py C> Actions of S1 _)) _
pTCAM O ™ S, P, = {all filters with unsharable actions}
lookups " . Ps = {all filters with sharable actions}

P \0 1| S jr\i»\ C, Actions of S5 J

Matched ~ |~ _*_*__J*_* _____) Ps = {F1,F;} Py ={F3}

filter l_o____i____82_), |

How to compute P, and Ps?

P is order-independent, simple...

P is order-dependent, lookup in parallel and choose a filter with higher priority (additional prioritization level)
But how to compute P, and Ps if there is no additional prioritization level?

Order-dependent policy

Idea: exploit merge algorithm OptimizeClassifier() as a black box”

Algorithm ComputeShared (P) Algorithm ComputeUnshared (P)

1: Ps=P 1. P,=P
2: for each filter F' of P do 2: for each filter F' of P, do
3 if F' has unsharable action then 3: if ' doesn’t contain any unsharable action then
4 change action of F' to ‘TRANSMIT’ 4: change action of F' to ‘TRANSMIT’
5. P;=OptimizeClassifier(P;) > reduce unnecessary filters in 5. P,=OptimizeClassifier(P,)> reduce unnecessary filters in
P, Py

Filter Action # Filter Action # Filter Action
FiFl1 1 1 %= = *x= 0 1 Aq Firl1 1 1 = *x = 0 1 Ay Fi |1 1 1 % = % 0 1| TRANSMIT
Fo|['1 0 % *x =x= % *x 1 Ao Fo |1 0 * =% * % *x 1 Ao Fo |1 0 * *x %= *x % 1 | TRANSMIT
Fs, |0 1.1 0 1 0 0 1 As F; {0 1 1 0 1 0 0 1 Az Fs 10 1 1 0 1 0 0 1 | TRANSMIT
F,bl1 0001 = 1 0 0 B, Fy |1 0 0 1 % 1 0 0| TRANSMIT Fpe 10 0 1 = 1 00 By
P 1 1 % % % % % 1 A Fs |1 1 % % * * *x 1 Ay Fs |1 1 % * % % % 1 | TRANSMIT
5 4 F 1 Fs 11 0 = = == 1 =% = B
Fs |1 0 * % *x 1 =x = B, 6 0 * % =x 1 % % | TRANSMIT 7

F * * * * * % * * TRANSMIT 0 * * * * * * * * | TRANSMIT
Fo | * % % =x * % x x | TRANSMIT 0

Two parallel lookups

* P, is allocated per flow; P; is sharable
* Only one lookup results action block, the other is just ‘transmit’

Summary: requires TCAM space depends on a structure of filters in P

Pros:

* simple action block management

* no start+offset logic

Cons:

* dependent on classifier structure (in general complex computation)
* dependent on action types

* Two parallel lookups

General mechanism for policy splitting

Policy updates

* Since policies represents economic models, changes are infrequent...
But if updates are still required?

* Action updates (equivalent actions layout is complex, two parallel is
simpler, other as traditional)

* Filter updates (all non traditional schemes require less bandwidth to
TCAM, two parallel lookups can be more complex)

Summary of methods

Alowrawr suornode Jo
A1x9[dwod Juawaseury

no

yes

no

no

J130[JISJJO+1IRIS

no

yes

no

no

dnjool INVDL
[o[[ered [euonippy

no
no

no

yes

dnyjoo] WVDLL
[BLI3S [RUONIPPY

no
no

yes

no

2INJONIIS IAYISSB[O
uo Aouapuada(g

no
no

depends
on the
no. of
classes

yes

INVOL ur Jred
dIqereysun)

P

empty

1 entry

per class
per flow

| Pu|

VDL ur Jred
dqereys

empty

P

P

|Ps |

Traditional

Equivalent
Layout

Two Serial

Two Parallel

Evaluation and summary

Traditional Equivalent layouts Two serial Two parallel
Policy |shared unshared TCAM space, | shared unshared TCAM space, | shared unshared TCAM space, | shared unshared TCAM space,
1000 flows 1000 flows 1000 flows 1000 flows
Ciscol| O 10 10000 10 0 10 10 5 5010 6 4 4006
Cisco2| 0 16 16000 16 0 16 16 4 4016 15 1 1015
Cisco3| O 20 20000 20 0 20 20 5 5020 11 9 9011
Ciscod| 0 296 296000 296 0 296 206 5 5296 296 0 296
Cisco5| 0 158 158000 158 0 158 158 3 3158 158 0 158

Summary: exploiting invariants can achieve better efficiency of representation by several
orders of magnitude.

Ongoing and Future

How to increase chances of policies to be sharable?

» Taxonomy of classification fields (sharable, unsharable)
Outcome: Standardization of well-known classifiers and provisioning dependent on capabilities.

* Virtual pipeline architecture

Flows=data Policies=programs

if policies become too complex to be implemented in existing network infrastructure?
Answer: policy splitting (two parallel lookups scheme can be used as a general splitting infra)
Hay et al, Infocom 2013

Kang et al, CONEXT 2013

Thank You

