
Strategies for Mitigating TCAM
Space Bottlenecks

Kirill Kogan1,2, Sergey Nikolenko3,4, Patrick Eugster1,5, Eddie Ruan6

Purdue University1

IMDEA NETWORKS2

Steklov Institute of Mathematics at St. Petersburg3

National Research University Higher School of Economics4

TU Darmstadt5

Cisco Systems6

• Current state of the art in packet classification

• Impact of invariants on representation efficiency

• Proposed solutions

• Evaluation and summary

• Ongoing and future work

Outline

2

Types of classifiers
1. Flow: forwarding (path+traffic aggregation)

2. Policies (represent economic models)

• Both can be represented as hierarchical packet match with set actions

• Can have different prioritization schemes, update requirements, etc.

Suggestion: decouple policies from flows

This paper is about efficient representation of policies.

Terminology

{

𝐶1

𝐶2
 𝑃

𝐹 – filter

𝐴 - action block

𝐶 - class

𝑃 - policy

Two policies are semantically equivalent if in both same actions are applied for any packet.

A policy 𝑃 is order-independent if a policy 𝑃′ with any order of filters in 𝑃 is semantically equivalent to 𝑃

SW-based vs. TCAM-based solutions (single instance)

Memory Lookup time

𝑂(𝑁) 𝑂(𝑙𝑜𝑔𝑘−1𝑁)

𝑂(𝑁𝑘) 𝑂(𝑙𝑜𝑔𝑁)

5

SW-based: 𝑁 = 3 rules 𝐾 = 2 fields prefixes ranges

TCAM-based: 𝑁 = 3 rules 𝐾 = 3 prefixes ranges

Encoding #TCAM entries

Binary 42+28+50=120

Gray 24+8+32=64

Exploiting structural properties: Kogan et al, SIGCOMM 2014

Motivation and problem statement

• Can we optimize if a representation of classifier is optimal (memory perspective)?

• Invariant: Number of policies significantly smaller than number of ``flows'‘
(10-100k vs. Gold, Silver, Bronze).

Class-per-Flow-Actions (CFA) requirement: (actions can be flow specific
(unsharable): rate-limit, shape or non-flow-specific (sharable) as set ToS);

Problem: Find a semantically equivalent representation of a given policy P
that share at least part of P's classifier among all flows with P configured.

Traditional attachment model and CFA

• To implement CFA - a policy instance is configured per flow
• Si is a flow identifier
Summary: 𝑁 flows with 𝑃 configured require 𝑃 ∗ 𝑁 memory

Can we do it better by still implementing CFA?

Pros:

• simple management of action blocks

• independent from classifier structure

• Independent from type of actions

Cons:

• TCAM memory proportional to #flows

Equivalent Actions Layout

Pros:

• optimal implementation of CFA

• independent from classifier structure

• Independent from action types

Cons:

• complex actions block management

• implementation of start+offset logic

• A single classifier instance is configured in TCAM
• Every flow 𝑆𝑖maintains a start offset of the flow-specific actions block 𝐼(𝑆𝑖)
• An offset 𝑂𝑗 of any action block of a class 𝐶𝑗 in 𝑃 from 𝐼 𝑆𝑖 is the same for any flow 𝑆𝑖 with 𝑃 configured

• 𝑃 is a policy identifier
• Address of action block is 𝑂𝑗 + 𝐼(𝑆𝑖)

Summary: 𝑁 flows with 𝑃 configured require only 𝑃 memory
Can we simplify actions management and avoid start+offset logic?

Two Serial Lookups

• A single classifier instance is configured in TCAM

• The result of the first TCAM lookup is a class id 𝐶𝑖.

• The second lookup is based on a class id 𝐶𝑖 and a flow id 𝑆𝑗

• 𝑃 is a policy identifier

Summary: 𝑁 flows with 𝑃 configured require only 𝑃 +𝑁𝑐 ∗ 𝑁 memory, 𝑁𝑐 is a number of classes in 𝑃

Pros:

• a single instance of a policy

• Independent from action types

• simple action block management

• no start+offset logic

Cons:

• 1 TCAM entry per class

• depend on a classifier structure:

results depend on sizes of classes and classification
width

• two serial lookups

Relaxed CFA requirement cont.

• Two types of actions:

sharable (e.g. set fields)

none sharable (e.g. rate-limit)

• Idea: split all filters of 𝑃 = 𝑃𝑈 + 𝑃𝑆
𝑃𝑢 = 𝑎𝑙𝑙 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 𝑢𝑛𝑠ℎ𝑎𝑟𝑎𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑆 = {𝑎𝑙𝑙 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 𝑠ℎ𝑎𝑟𝑎𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠}

𝑃𝑆 = {𝐹1, 𝐹2} 𝑃𝑈 = {𝐹3}

How to compute 𝑃𝑢 and 𝑃𝑆?
𝑃 is order-independent, simple…
𝑃 is order-dependent, lookup in parallel and choose a filter with higher priority (additional prioritization level)
But how to compute 𝑃𝑢 and 𝑃𝑆 if there is no additional prioritization level?

Order-dependent policy

Idea: exploit merge algorithm 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟() as a ``black box’’

Two parallel lookups

• 𝑃𝑢 is allocated per flow; 𝑃𝑠 is sharable

• Only one lookup results action block, the other is just `𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡′

Summary: requires TCAM space depends on a structure of filters in 𝑃

Pros:

• simple action block management

• no start+offset logic

Cons:

• dependent on classifier structure (in general complex computation)

• dependent on action types

• Two parallel lookups

General mechanism for policy splitting

Policy updates

• Since policies represents economic models, changes are infrequent…

But if updates are still required?

• Action updates (equivalent actions layout is complex, two parallel is
simpler, other as traditional)

• Filter updates (all non traditional schemes require less bandwidth to
TCAM, two parallel lookups can be more complex)

Summary of methods

Evaluation and summary

Summary: exploiting invariants can achieve better efficiency of representation by several
orders of magnitude.

Ongoing and Future

How to increase chances of policies to be sharable?

• Taxonomy of classification fields (sharable, unsharable)
Outcome: Standardization of well-known classifiers and provisioning dependent on capabilities.

• Virtual pipeline architecture

Flows=data Policies=programs
if policies become too complex to be implemented in existing network infrastructure?

Answer: policy splitting (two parallel lookups scheme can be used as a general splitting infra)

Hay et al, Infocom 2013

Kang et al, CONEXT 2013

Thank You

