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Types of classifiers
1. Flow: forwarding (path+traffic aggregation)

2. Policies (represent economic models)

• Both can be represented as hierarchical packet match with set actions

• Can have different prioritization schemes, update requirements, etc.

Suggestion: decouple policies from flows

This paper is about efficient representation of policies.



Terminology

 

{

𝐶1

𝐶2
 𝑃

𝐹 – filter

𝐴 - action block

𝐶 - class

𝑃 - policy

Two policies are semantically equivalent if in both same actions are applied for any packet. 

A policy 𝑃 is order-independent if a policy 𝑃′ with any order of filters in 𝑃 is semantically equivalent to 𝑃



SW-based vs. TCAM-based solutions (single instance)

Memory Lookup time

𝑂(𝑁) 𝑂(𝑙𝑜𝑔𝑘−1𝑁)

𝑂(𝑁𝑘) 𝑂(𝑙𝑜𝑔𝑁)
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SW-based:  𝑁 = 3 rules 𝐾 = 2 fields      prefixes  ranges

TCAM-based:  𝑁 = 3 rules 𝐾 = 3 prefixes ranges

Encoding #TCAM entries

Binary 42+28+50=120

Gray 24+8+32=64

Exploiting structural properties: Kogan et al, SIGCOMM 2014



Motivation and problem statement

• Can we optimize if a representation of classifier is optimal (memory perspective)?

• Invariant: Number of policies significantly smaller than number of ``flows'‘ 
(10-100k vs. Gold, Silver, Bronze).

Class-per-Flow-Actions (CFA) requirement: (actions can be flow specific 
(unsharable): rate-limit, shape or non-flow-specific (sharable) as set ToS);

Problem: Find a semantically equivalent representation of a given policy P
that share at least part of P's classifier among all flows with P configured.



Traditional attachment model and CFA

• To implement CFA - a policy instance is configured per flow
• Si is a flow identifier
Summary:  𝑁 flows with 𝑃 configured require 𝑃 ∗ 𝑁 memory

Can we do it better by still implementing CFA?

Pros: 

• simple management of action blocks

• independent from classifier structure

• Independent from type of actions

Cons: 

• TCAM memory proportional to #flows



Equivalent Actions Layout

Pros: 

• optimal implementation of CFA

• independent from classifier structure

• Independent from action types

Cons: 

• complex actions block management

• implementation of start+offset logic

• A single classifier instance is configured in TCAM
• Every flow 𝑆𝑖maintains a start offset of the flow-specific actions block 𝐼(𝑆𝑖)
• An offset 𝑂𝑗 of any action block of a class 𝐶𝑗 in 𝑃 from 𝐼 𝑆𝑖 is the same for any flow 𝑆𝑖 with 𝑃 configured 

• 𝑃 is a policy identifier
• Address of action block is 𝑂𝑗 + 𝐼(𝑆𝑖)

Summary:  𝑁 flows with 𝑃 configured require only 𝑃 memory
Can we simplify actions management and avoid start+offset logic?



Two Serial Lookups

• A  single classifier instance is configured in TCAM 

• The result of the first TCAM lookup is a class id 𝐶𝑖.

• The second lookup is based on a class id 𝐶𝑖 and a flow id 𝑆𝑗

• 𝑃 is a policy identifier

Summary:  𝑁 flows with 𝑃 configured require only 𝑃 +𝑁𝑐 ∗ 𝑁 memory, 𝑁𝑐 is a number of classes in 𝑃

Pros: 

• a single instance of a policy

• Independent from action types

• simple action block management

• no start+offset logic

Cons: 

• 1 TCAM entry per class

• depend on a classifier structure: 

results depend on sizes of classes and classification 
width 

• two serial lookups 



Relaxed CFA requirement cont.

• Two types of actions: 

sharable (e.g. set fields) 

none sharable (e.g. rate-limit)

• Idea: split all filters of 𝑃 = 𝑃𝑈 + 𝑃𝑆
𝑃𝑢 = 𝑎𝑙𝑙 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 𝑢𝑛𝑠ℎ𝑎𝑟𝑎𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑆 = {𝑎𝑙𝑙 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑤𝑖𝑡ℎ 𝑠ℎ𝑎𝑟𝑎𝑏𝑙𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠}

𝑃𝑆 = {𝐹1, 𝐹2} 𝑃𝑈 = {𝐹3}

How to compute 𝑃𝑢 and 𝑃𝑆?
𝑃 is order-independent, simple…
𝑃 is order-dependent, lookup in parallel and choose a filter with higher priority (additional prioritization level)
But how to compute 𝑃𝑢 and 𝑃𝑆 if there is no additional prioritization level?



Order-dependent policy

Idea: exploit merge algorithm 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟( ) as a ``black box’’



Two parallel lookups

• 𝑃𝑢 is allocated per flow; 𝑃𝑠 is sharable

• Only one lookup results action block, the other is just `𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡′

Summary: requires TCAM space depends on a structure of filters in 𝑃

Pros: 

• simple action block management

• no start+offset logic

Cons: 

• dependent on classifier structure (in general complex computation)

• dependent on action types 

• Two parallel lookups

General mechanism for policy splitting



Policy updates

• Since policies represents economic models, changes are infrequent…

But if updates are still required?

• Action updates (equivalent actions layout is complex, two parallel is 
simpler, other as traditional)

• Filter updates (all non traditional schemes require less bandwidth to 
TCAM, two parallel lookups can be more complex)



Summary of methods



Evaluation and summary

Summary: exploiting invariants can achieve better efficiency of representation by several 
orders of magnitude.



Ongoing and Future

How to increase chances of policies to be sharable?

• Taxonomy of classification fields (sharable, unsharable)
Outcome: Standardization of well-known classifiers and provisioning dependent on capabilities.

• Virtual pipeline architecture

Flows=data        Policies=programs
if policies become too complex to be implemented in existing network infrastructure?

Answer: policy splitting (two parallel lookups scheme can be used as a general splitting infra)

Hay et al, Infocom 2013

Kang et al, CONEXT 2013
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