MODELING AND EVALUATION OF CHIP-TO-CHIP SCALE SILICON PHOTONIC NETWORKS

Robert Hendry, Dessislava Nikolova, Sébastien Rumley, Keren Bergman Columbia University HOTI 2014

Chip-to-chip optical networks

- Projected chip I/O bandwidth: tens of Tb/s
- Chip I/O bandwidth limited by pin count, data rate
- Promising solution: silicon photonics
 - Dense bandwidth via WDM
 - High data rates
 - Energy-distance independence in fiber

Outline

- Silicon photonic chip-to-chip networks
- Characterizing loss and WDM capacity
- Modeling power
- Determining network performance
- Conclusions

Microring-based silicon photonic links

- Microrings
 - Modulation
 - Switching
 - Filtering

Demultiplexing filter (Kotura/ Oracle)

- Other optical devices:
 - Lasers, couplers, integrated photodetectors

Chip-to-chip optical networks

- "Chip-to-chip" low radix, high bandwidth
- Chose two architectures to represent extremes of design space

Full mesh

One link at each source for each destination

Switched architecture

One input and output link per PNI

"Drop" state

2x2 switch

Comparing topologies

- Laser power is the largest contributor to overall power in the network
 - 4.5%, X. Zheng, et al. "Efficient WDM laser sources towards terabytes/s silicon photonic interconnects." *Journal of Lightwave Technology,* vol. 31, no. 15, 2013.

Assume lasers are always on

- Laser stabilization time on the order of microseconds
- Context: small packets, short inter-arrivals

Energy efficiency closely related to utilization of laser sources

- Full mesh expectation:
 - No contention, lower queuing latency
 - · More lasers, higher power, poor efficiency with load is low
- Switched architecture expectation:
 - Contention, higher queuing latency
 - Resource sharing improves utilization and therefore efficiency

Shared input/output waveguides

Sacrificing performance for better utilization

Shared input/output waveguides

Another way to share laser sources

Design space

- Topology
 - Benes
 - Full mesh
- Sharing
 - No sharing, or two-way sharing
- Network radix
 - 4, 8, or 16
- Goal: to find optimal topologies for given bisectional bandwidth requirements
- Ex: "Benes-4T-2S", "FM-16T-1S"

Outline

- Silicon photonic chip-to-chip networks
- Characterizing loss and WDM capacity
- Modeling power
- Determining network performance
- Conclusions

Determining worst-case loss

Combine losses of all devices along worst-case path of light

Modulators: 5.4 – 7.85 dB

Complexity vs. link capacity

- 10 Gb/s per wavelength channel, OOK modulation
- Intermodulation crosstalk limits WDM capacity to 125 wavelengths
 - Assuming 50nm spectrum
 - K. Padmaraju, et al. "Intermodulation Crosstalk Characteristics of WDM Silicon Microring Modulators." *IEEE Photonics Letters*, vol. 26, no. 14, 2014.

Peak Bisectional Bandwidth

- Loss \rightarrow maximum wavelengths per link
- Maximum wavelengths x 10 Gb/s x number of links in bisection \rightarrow peak bisectional bandwidth

T = number of PNIs, S = number of Tx/Rx per link

Peak Bisectional Bandwidth

- Loss \rightarrow maximum wavelengths per link
- Maximum wavelengths x 10 Gb/s x number of links in bisection \rightarrow peak bisectional bandwidth

T = number of PNIs, S = number of Tx/Rx per link

Outline

- Silicon photonic chip-to-chip networks
- Characterizing loss and WDM capacity
- Modeling power
- Determining network performance
- Conclusions

Power modeling

- Microring tuning, trimming
 - Thermal fluctuations
 - Imperfect fabrication
- Laser power
 - A function of loss and number of wavelengths used
- Static dissipation in photodetectors
- Dynamic modulation, switching power
- Not modeling network interfaces

Device	Type/Origin	Power/Device (mW)
Modulator	Thermal	0.875
	Driver circuitry	1.35
	Dissipation in ring	0.1
Switch	Thermal	3.5
Filter	Thermal	0.875
Detector	Static	3.95
Laser	Static	1250

Outline

- Silicon photonic chip-to-chip networks
- Characterizing loss and WDM capacity
- Modeling power
- Determining network performance
- Conclusions

Impact of layout on network performance

- Poisson arrivals, uniform random destination
- Fixed message size (256B)
- Assume we have an arbitration scheme that can reach 100% utilization across the chip-scale network
 - Models indicate queuing and head-to-tail latency

Impact of layout on energy per bit

- The best configuration in terms of energy per bit depends on offered load
- However, these figures hide latency

Impact of layout on energy per bit

- The best configuration in terms of energy per bit depends on offered load
- However, these figures hide latency

Pareto optimality of topologies

 Can move to a more power-consuming topology to improve latency, or vice versa

Pareto optimality of topologies

 Low loaded networks inevitably suffer from higher energy per bit

Conclusions

- Developed methodology for navigating design space
- Using cross-layer analysis, we characterized an upper bound on the energy efficiency of silicon photonic networks at the chip-to-chip scale
- Trend: *For (relatively small scale) silicon photonic networks,* the mechanisms that accommodate for low loads (i.e. resource sharing) degrade energy efficiency