Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work

Enhanced Overloaded CDMA Interconnect (OCI) Bus Architecture for on-Chip Communication

Khaled E. Ahmed Mohammed M. Farag

Department of Electrical Engineering. Alexandria University

HOTI, 2015

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	000000	0
Outline				

- From T/SDMA to CDMA
- Conventional On-Chip CDMA Bus
- Overloaded CDMA Interconnect (OCI)
 - Pair difference codes
 - Proposed Bus Architecture
- 3 Results
 - T/SDMA vs CMDA
 - Performance
- 4 OCI vs AXI
 - High Level Synthesis (HLS) OCI Bus
 - D-OCI vs AXI results
- 5 Conclusions and Future Work

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
●000000		00000000	000000	0
Outline				

• From T/SDMA to CDMA

- Conventional On-Chip CDMA Bus
- Overloaded CDMA Interconnect (OCI)
 - Pair difference codes
 - Proposed Bus Architecture
- 3 Results
 - T/SDMA vs CMDA
 - Performance

4 OCI vs AXI

- High Level Synthesis (HLS) OCI Bus
 D-OCI vs AXI results
- 5 Conclusions and Future Work

- In TDMA: Bus access is time shared.
- Arbitration overhead increases with the number of cores.
- Capacity is limited by the number of time slots.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - 釣�??

- In SDMA: point to point connection by crossbars.
- Best connectivity at the expense of quadratic complexity.
- Capacity is limited by the complexity.

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
○○○●○○○		00000000	000000	O
Outline				

- From T/SDMA to CDMA
- Conventional On-Chip CDMA Bus
- Overloaded CDMA Interconnect (OCI)
 - Pair difference codes
 - Proposed Bus Architecture
- 3 Results
 - T/SDMA vs CMDA
 - Performance

OCI vs AXI

- High Level Synthesis (HLS) OCI BusD-OCI vs AXI results
- 5 Conclusions and Future Work

- In CDMA: Bus access is code shared.
- Each core has a unique N chip spreading code
- The data from each core is spread by XORing the data with each chip in the spreading code.
- The spreading codes are summed and sent serially on the bus.
- Data can be extracted from the bus by correlating with the signature code.
- CDMA requires a single user receiver (Matched filter).

- Data is XORed with the spreading code.
- All spreading codes are summed.
- Correlation is done using two accumulators.
- The accumulator with the larger value determines the sent bit.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - 釣�??

- CMDA for on-chip interconnects is not fully explored yet, leaving a room for optimization
- As shown in this paper, the bus capacity and bandwidth can be easily increased by applying some new innovative ideas.
- In this work, we aim to increase the capacity without increasing the complexity.

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000	•0000000000	00000000	000000	O
Outline				

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへの

10/38

- From T/SDMA to CDMA
- Conventional On-Chip CDMA Bus
- Overloaded CDMA Interconnect (OCI)
 - Pair difference codes
 - Proposed Bus Architecture
- 3 Results
 - T/SDMA vs CMDA
 - Performance

4 OCI vs AXI

- High Level Synthesis (HLS) OCI Bus
 D-OCI vs AXI results
- 5 Conclusions and Future Work

- In the orthogonal code set, The difference between two consecutive bus sums is always even, we call it the pair difference (PD).
- Non-orthogonal codes can be added on the bus that alters the modulo 2 of PD.
- The modulo 2 of PD can thus determine the data encoded in the non-orthogonal code.

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
	0000000000			

- For a spreading code set of length N chips, there are only N/2 pairs of chips.
- Therefore, there can exist only N/2 PD codes.
- The codes can be generated by the formula $PD[I] = 2^{7-2I}$, $0 \le I < N/2$.

$$PD[0] = 2^{7} = \{1, 0, 0, 0, 0, 0, 0, 0\}$$
$$PD[1] = 2^{5} = \{0, 0, 1, 0, 0, 0, 0, 0\}$$
$$PD[2] = 2^{3} = \{0, 0, 0, 0, 1, 0, 0, 0\}$$
$$PD[3] = 2^{1} = \{0, 0, 0, 0, 0, 0, 1, 0\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	000000	O
Outline				

- From T/SDMA to CDMA
- Conventional On-Chip CDMA Bus
- Overloaded CDMA Interconnect (OCI)
 - Pair difference codes
 - Proposed Bus Architecture
- 3 Results
 - T/SDMA vs CMDA
 - Performance

4 OCI vs AXI

- High Level Synthesis (HLS) OCI Bus
 D-OCI vs AXI results
- 5 Conclusions and Future Work

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	000000	0

< □ > < □ > < 臣 > < 臣 > 臣 = ∽ 9 < で

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	000000	0
Implem	entation			

- We propose an overloaded CDMA architecture based on the PD codes, thus called the Difference-OCI (D-OCI)
- Full capacity bus implemented on AC701 FPGA kit.
- Two architectures are implemented: reference and pipelined architectures.

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000	○○○○○○●○○○○○	00000000	000000	0
Hybrid	Encoder			

▲ロト ▲圖ト ▲目ト ▲目ト 三目 - のへの

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000	○○○○○○●○○○○	00000000	000000	O
Hybrid	Encoder			

- The encoder is AND gate.
- If data is 0 send a stream of 0, the pair difference remains even.
- If data is 1 send a non-orthogonal PD code causes the pair difference to be odd.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

17/38

• The modulo 2 of the pair difference is detectable.

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	000000	0
Binary I	Bus Adder			

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ - 圖 - 釣�?

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000	○○○○○○○○●○○	00000000	000000	0
Binary	Bus Adder			

- Adds the encoded chips from all encoders.
- The sum produced by the adder is passed to all decoders.
- Surrounded by two pipeline register isolating the critical path in the adder.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 • ���

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000	○○○○○○○○○○	00000000	000000	O
Decode	rs			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000	○○○○○○○○○●	00000000	000000	O
Decode	rs			

- The orthogonal code decoders resemble the decoder employed in conventional CDMA.
- The PD code decoders employ an XOR gate to determine the modulo 2 of the pair difference.
- The inputs to the XOR gate are the LSBs of the bus sums in a pair.
- A register is used to hold the incoming LSBs of the bus sum.

0000000	000000000000	●0000000	000000	O
Outline				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへの

22/38

- From T/SDMA to CDMA
- Conventional On-Chip CDMA Bus
- Overloaded CDMA Interconnect (OCI)
 - Pair difference codes
 - Proposed Bus Architecture
- 3 Results
 - T/SDMA vs CMDA
 - Performance

4 OCI vs AXI

- High Level Synthesis (HLS) OCI Bus
 D-OCI vs AXI results
- 5 Conclusions and Future Work

(a) Resources as combinational (hashed) and non-combinational (solid) in LUT-FF $\,$

TDMA SDMA CDMA

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00●00000	000000	0
T/SDM	A vs CMDA			

- Conventional CDMA utilizes a higher area than TDMA but offers equivalent bandwidth.
- Conventional CDMA provides lower bandwidth than SDMA but consumes much smaller area.
- OCI bus can improve the bandwidth and reduce the area per IP core.
- We compare the conventional CDMA to T/SDMA, we then compare the D-OCI the conventional CDMA along with the M-OCI developed in our previous work.

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		○○○●○○○○	000000	0
Outline				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへの

25/38

- From T/SDMA to CDMA
- Conventional On-Chip CDMA Bus
- Overloaded CDMA Interconnect (OCI)
 - Pair difference codes
 - Proposed Bus Architecture
- 3 Results
 - T/SDMA vs CMDA
 - Performance

4 OCI vs AXI

- High Level Synthesis (HLS) OCI BusD-OCI vs AXI results
- 5 Conclusions and Future Work

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	000000	0
Area				

- Number of IPs is 50% more.
- The extra area is small compared to extra IPs.
- Area per IP is reduced.

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	000000	0
Frequen	су			

- Computation path is increased.
- The maximum frequency decreased.
- Can be fixed by pipelining the bus adder.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		○○○○○○●○	000000	0
Bandwie	dth			

- The number of sent bits increased by %50.
- Bandwidth increased.

◆□▶ ◆□▶ ★ □▶ ★ □ ● ● ● ●

Power (Consumption			
Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		○○○○○○○●	000000	0

- Area per IP is reduced.
- So power per IP is reduced.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	•ooooo	0
Outline				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目 - つへで

30/38

- Background
 - From T/SDMA to CDMA
 - Conventional On-Chip CDMA Bus
- Overloaded CDMA Interconnect (OCI)
 - Pair difference codes
 - Proposed Bus Architecture
- 3 Results
 - T/SDMA vs CMDA
 - Performance

OCI vs AXI

- High Level Synthesis (HLS) OCI Bus
- D-OCI vs AXI results
- 5 Conclusions and Future Work

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	○●○○○○	0
HLS OC	CI Bus			

- The AXI bus is widely deployment in modern SoCs, it is extensively supported by different vendors and CAD tools and supports both TDMA and SDMA bus access.
- To compare the OCI to the AXI, we implemented a D-OCI HLS IP using the Vivado HLS tool.
- OCI and AXI implemented and validated on the Zedboard Zynq-7000 SoC

OCL vs	AXI testhed			
Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	00●000	0

◆□> ◆□> ◆∃> ◆∃> ∃ ∽900

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	○○○●○○	O
Outline				

33/38

- From T/SDMA to CDMA
- Conventional On-Chip CDMA Bus
- Overloaded CDMA Interconnect (OCI)
 - Pair difference codes
 - Proposed Bus Architecture
- 3 Results
 - T/SDMA vs CMDA
 - Performance

OCI vs AXI

- High Level Synthesis (HLS) OCI Bus
- D-OCI vs AXI results
- 5 Conclusions and Future Work

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	○○○○●○	0

D	$) \cap $	VIC	ΛΥΙ	roculto
D-C	л Сі	vs		resuits

Bus	Bus Capacity	LUTs	FFs	Latency	Frequency	Bandwidth
Topology	$M \times M$			clock cycles	MHz	Gbps
D-OCI N = 8	11×11	177	222	13	109	2.951
D-OCI N = 16	23×23	487	567	22	113	3.78
AXI SAMD-Crossbar	11×11	8,229	5,651	42	104	0.871
AXI SAMD-Crossbar	16×16	11,299	7,833	61	93	0.78
AXI SASD-TDMA	11×11	2,123	1,761	122	107	0.309
AXI SASD-TDMA	16×16	2,919	2,532	177	105	0.304

・ロト ・母・ ・ヨ・ ・ヨ・ うへの・

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	○○○○○●	0
D-OCI	vs AXI results			

- The D-OCI bus contains only the write channel while the AXI contains read, write and write response channels.
- This causes the magnitude difference in utilization of the D-OCI bus over AXI Shared Address Shared Data (SASD) bus.
- D-OCI demonstrates the lowest latency since addressing the slaves is done once before the data transaction.
- AXI Shared Address Multiple Data (SAMD) demonstrates higher transaction latency than the D-OCI since the addressing is done in sequence.
- AXI SAMD should demonstrate lower latency than the D-OCI in burst access mode.

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	000000	©
Conclus	ions			

- On-Chip CDMA is not fully explored yet.
- CMDA capacity can be boosted by 50% using orthogonal signature code properties.
- The OCI can be used as the core interconnect of buses and NoCs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 • ���

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
0000000		00000000	000000	O
Future '	Work			

• Architectural enhancements: pipelining, resource sharing.

<□> <@> < E> < E> E のQ@

37/38

• Explore more signature code properties.

Background	Overloaded CDMA Interconnect (OCI)	Results	OCI vs AXI	Conclusions and Future Work
				•

Thank You

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●