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We need an 
abstraction! 
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1980’s 2000’s 2020’s 

Lossless Networks 
RDMA 

Device Programming 
Offload 

Lossy Networks 
Ethernet 

How to 
program 
QsNet? 

How to 
offload in 
Portals 4? 

How to 
offload in 
libfabric? 
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Computations Dependencies Communications 
(non-blocking) 

L0: recv a from P1;  
L1: b = compute f(buff, a);  
L2: send b to P1; 
L0 and CPU-> L1 
L1 -> L2 

Offload Engine CPU 

recv 

send 

comp EXPRESS 
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Performance Model 

[1] A. Alexandrov et al. "LogGP: incorporating long messages into the LogP model—one step closer towards a realistic model for  
     parallel computation.“, Proceedings of the seventh annual ACM symposium on Parallel algorithms and architectures. ACM, 1995. 

CPU 

OE 

OE 

CPU 

P0 

P1 

P1{ 
  L0: recv m1 from P1;  
  L1: send m2 to P1; 
  L0 -> L1 
} 

P0{ 
  L0: recv m1 from P1;  
  L1: send m2 to P1; 
} 

time 
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Offloading Collectives 

A collective operation is fully offloaded if: 
1.  No synchronization is required in order to start the collective operation 
2.  Once a collective operation is started, no further CPU intervention is required in order 

to progress or complete it. 

L0: recv msg1 from 5;  
L1: recv msg2 from 6; 
L3: res = compute f(res, msg1); 
L4: res = compute f(res, msg2);  
L5: send res to 0; 
L1 and CPU -> L3 
L2 and CPU -> L4 
L3 and L4 -> L5 

6 2 5 

1 

3 

0 

4 

recv 

send 

comp 

recv comp 

CPU 

Definition. A schedule is a local dependency graph describing a partial ordered set of 
operations. 
Definition. A collective communication involving 𝑛 nodes can be modeled as a set of schedules 𝑆= ​𝑆↓1 ,  …, ​
𝑆↓𝑛  where each node 𝑖 participates in the collective executing its own schedule ​𝑆↓1  
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Asynchronous	
  algorithms,	
  with	
  their	
  ability	
  to	
  tolerate	
  memory	
  
latency,	
  form	
  an	
  important	
  class	
  of	
  algorithms	
  for	
  modern	
  
computer	
  architectures.	
  
Edmond Chow et al., “Asynchronous Iterative Algorithm for Computing Incomplete Factorizations 
on GPUs”, High Performance Computing. Springer International Publishing, 2015. 
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Theory Synchronized 
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Solo Collectives 

Solo 

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 

§  Synchronized collectives lead to the synchronization of the 
participating nodes 

§  A solo collective starts its execution as soon as one node (the 
initiator) starts its own schedule 

Collective call Data message Activation message 
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Solo Collectives: Activation 

P0 P1 P2 P3 

§  Root-Activation: the initiator is always the root of the collective 
§  Non-Root-Activation: the initiator can be any participating node 

P0 P1 P2 P3 P4 P5 P6 P7 
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A Case Study: Portals 4 

[2] “The Portal 4.0.2 Network Programming Interface”  

Portals Table  

Priority List Overflow List 

ME 

ME 

ME Discard 

ME 

ME 

NI MD 

MD 

MD 

MD 

Interconnection 
Network 

NI 

§  Based on the one-sided communication model 
§  Matching/Non-Matching semantics can be adopted 
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Communication primitives 
§  Put/Get operations are natively supported by Portals 4 
§  One-sided + matching semantic 

A Case Study: Portals 4 

Atomic operations 
§  Operands are the data specified by the MD at the initiator and by the ME 

at the target 
§  Available operators: min, max, sum, prod, swap, and, or, … 

Counters  
§  Associated with MDs or MEs 
§  Count specific events  (e.g., operation completion) 

Triggered operations 
§  Put/Get/Atomic associated with a counter 
§  Executed when the associated counter reaches the specified threshold 
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Experimental results 

Curie, a Tier-0 system  
5,040 nodes 
2 eight-core Intel Sandy Bridge processors 
Full fat-tree Infiniband QDR 

OMPI: Open MPI 1.8.4 
OMPI/P4: Open MPI 1.8.4 + Portals 4 backend 
FFLIB: proof of concept library 
One process per computing node 

Broadcast Allreduce 

More about FFLIB at http://spcl.inf.ethz.ch/Research/
Parallel_Programming/FFlib/ 
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Experimental results 
Allgather Scatter 

Curie, a Tier-0 system  
5,040 nodes 
2 eight-core Intel Sandy Bridge processors 
Full fat-tree Infiniband QDR 

OMPI: Open MPI 1.8.4 
OMPI/P4: Open MPI 1.8.4 + Portals 4 backend 
FFLIB: proof of concept library 
One process per computing node 

More about FFLIB at http://spcl.inf.ethz.ch/Research/
Parallel_Programming/FFlib/ 
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§  Why? To study offloaded collectives at large scale 
§  How? Extending the LogGOPSim to simulate Portals 4 functionalities 
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Simulations 

[3] T. Hoefler, T. Schneider, A. Lumsdaine. “LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model”, In Proceedings of 
the 19th ACM International Symposium on High Performance Distributed Computing (HPDC '10). ACM, 2010. 
[4] Underwood et al., "Enabling Flexible Collective Communication Offload with Triggered Operations“, IEEE 19th Annual Symposium on 
High Performance Interconnects (HOTI ‘11). IEEE, 2011. 

Allreduce Broadcast 

L o g G m 
P4-SW 5𝜇𝑠 6𝜇𝑠 6𝜇𝑠 0.4𝑛𝑠 0.9𝑛𝑠 

P4-HW 2.7𝜇𝑠 1.2𝜇𝑠 0.5𝜇𝑠 0.4𝑛𝑠 
0.3𝑛𝑠  
[4] 
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Abstract Machine Model Offloading Collectives 

Solo Collectives Mapping to Portals 4 

Results 
P. Jolivet K. D. Underwood 

T. Hoefler 



spcl.inf.ethz.ch 
@spcl_eth 

Backup slides 

15 



spcl.inf.ethz.ch 
@spcl_eth 

16 

Multi-Version Scheduling 

§  Enables the multiple asynchronous execution of the same 
collective 
§  It allows the pre-posting of k versions of the same schedule 
§  Each version can have its own buffers 
§  Each version can be activated by a different node 

§  Implemented as FIFO queue of schedules 
§  Only one scheduled enabled at each time: ​𝑆↓𝑖  
§  When ​𝑆↓𝑖  is activated, the next in the queue ​𝑆↓𝑖−1   must be enabled 

Independent operations of 
schedule ​𝑆↓𝑖  

Independent operations of 
schedule ​𝑆↓𝑖−1  
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Use Case: Multigrid 

§  Multilevel preconditioners are a dominant paradigm for large-scale 
partial differential equation simulations 
§  Theoretically optimal  
§  High communication and synchronization overheads 

 
§  Two-grid hierarchy 

§  Only one process perform the coarsening 

 
§  Simple benchmark implementing the communication patter  

§  The introduction of solo-collective led to a 1.5x improvement in the 
completion time 

§  A full benchmark would require a study of the convergence rate for such 
fully asynchronized approach 

P0:: 
  gather() 
  coarse_work() 
  scatter() 

Pi, i>0:: 
  work() 
  gather() 
  scatter() 
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Solo Collectives 

§  Collective communications lead to the pseudo-synchronization 
of the participating nodes 
§  Each node starts its own schedule at time ​𝑡↓𝑖  
§  The collective communication will terminate at a time ​𝑡↓𝑠 ≥   ​𝑚𝑎𝑥↓𝑖 ( ​𝑡↓𝑖 ) 

§  A solo collective starts its execution as soon as one node, the 
initiator, starts its own schedule 
§  The schedule of other nodes is asynchronously activated 
§  The initiator starts its schedule at time ​𝑡↓𝑖𝑛𝑖𝑡  
§  The collective communication will terminate at a time ​𝑡↓𝑎 ≥   ​𝑡↓𝑖𝑛𝑖𝑡 +  𝜖 
§  The term 𝜖 models the activation time: 𝜖  ≤max​( ​𝜖↓𝑖 )  



spcl.inf.ethz.ch 
@spcl_eth 

19 

Solo Collectives: activation 

Solo Collectives 

Multi-Source Single-Source 

Root-Activated Non-Root-Activated 

§  One active node 
§  No activation cost 
§  e.g., broadcast, scatter 
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Experimental results 

Curie, a Tier-0 system  
5,040 nodes 
2 eight-core Intel Sandy Bridge processors 
Full fat-tree Infiniband QDR 

OMPI: Open MPI 1.8.4 
OMPI/P4: Open MPI 1.8.4 + Portals 4 backend 
FFLIB: proof of concept library 
One process per computing node 

Broadcast Allreduce 
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Experimental results 

Curie, a Tier-0 system  
5,040 nodes 
2 eight-core Intel Sandy Bridge processors 
Full fat-tree Infiniband QDR 

OMPI: Open MPI 1.8.4 
OMPI/P4: Open MPI 1.8.4 + Portals 4 backend 
FFLIB: proof of concept library 
One process per computing node 

Allgather Scatter 
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§  Why? To study offloaded collectives at large scale 
§  How? Extending the LogGOPSim to simulate Portals 4 functionalities 
 

§  FFLIB-HW uses 𝑚=0.3𝜇𝑠, discussed in [3] to model the incoming 
message processing time  

22 

Simulations 

[2] T. Hoefler, T. Schneider, A. Lumsdaine. “LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model” 
[3] Underwood et al., "Enabling Flexible Collective Communication Offload with Triggered Operations" 

Allreduce Broadcast 
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Point-to-Point Protocols 

Eager protocol 
•  Expected messages: priority list 
•  Unexpected messages: overflow list 

Rendezvous protocol 
•  No shadow buffers are required 
•  Synchronization happens among OEs 

Receiver Receiver 
Sender 

ptl_md_t data; 
ptl_me_t rts; 
PtlMEAppend(rts, ct_rts); 
PtlTriggeredGet(data, ct_rts, 1); 

ptl_md_t rts; 
ptl_me_t data; 
PtlMEAppend(data, NONE); 
PtlPut(rts); 

RTS 

GET 

DATA GET 

DATA 

RTS 

GET 

DATA GET 

DATA 
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Offloading Point-To-Point Protocols 
§  P2P communications are building blocks of our abstract model 

§  They can be implemented according with different protocols (i.e., eager, 
rendezvous) 
Can this protocols be fully offloaded to the OE (e.g., Portals 4-compliant)? 

Eager Rendezvous 

Expected: the message is directly 
received in the user-provided buffer. 
 
Unexpected: the message is received in a 
temporary buffer. It will copied in the user-
provided one when the receive will be 
posted. 
 
Portals 4 priority and overflow list can be 
used for a straightforward implementation 
of this protocol. 

Only the Ready-To-Send (RTS) control message 
can be unexpectedly received. 
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Communication primitives 
§  Put/Get operations are natively supported by Portals 4 
§  One-sided + matching semantic 

A Case Study: Portals 4 

Atomic operations 
§  Operands are the data specified by the MD at the initiator and by the ME 

at the target 
§  Available operators: min, max, sum, prod, swap, and, or, … 

Counters  
§  Associated with MDs or MEs 
§  Count specific events  (e.g., operation completion) 

Triggered operations 
§  Put/Get/Atomic associated with a counter 
§  Executed when the associated counter reaches the specified threshold 

Can point-to-point 
protocols be fully 

offloaded? 

Fully offloading:  
No synchronization & No CPU intervention 

Eager protocol 
•  Expected messages: priority list 
•  Unexpected messages: overflow list 

Rendezvous protocol 
•  No shadow buffers are required 
•  Synchronization happens among OEs 

RTS 

GET 

DATA 


