
spcl.inf.ethz.ch
@spcl_eth

S. DI GIROLAMO, P. JOLIVET, K. D. UNDERWOOD, T. HOEFLER

Exploiting Offload Enabled Network Interfaces

spcl.inf.ethz.ch
@spcl_eth

We need an
abstraction!

2

1980’s 2000’s 2020’s

Lossless Networks
RDMA

Device Programming
Offload

Lossy Networks
Ethernet

How to
program
QsNet?

How to
offload in
Portals 4?

How to
offload in
libfabric?

spcl.inf.ethz.ch
@spcl_eth

OFFLOAD

3

Computations Dependencies Communications
(non-blocking)

L0: recv a from P1;
L1: b = compute f(buff, a);
L2: send b to P1;
L0 and CPU-> L1
L1 -> L2

Offload Engine CPU

recv

send

comp EXPRESS

spcl.inf.ethz.ch
@spcl_eth

m

(s-1)G m

o

(s-1)G

o o

(s-1)G

(s-1)G

o

4

Performance Model

[1] A. Alexandrov et al. "LogGP: incorporating long messages into the LogP model—one step closer towards a realistic model for
 parallel computation.“, Proceedings of the seventh annual ACM symposium on Parallel algorithms and architectures. ACM, 1995.

CPU

OE

OE

CPU

P0

P1

P1{
 L0: recv m1 from P1;
 L1: send m2 to P1;
 L0 -> L1
}

P0{
 L0: recv m1 from P1;
 L1: send m2 to P1;
}

time

spcl.inf.ethz.ch
@spcl_eth

5

Offloading Collectives

A collective operation is fully offloaded if:
1.  No synchronization is required in order to start the collective operation
2.  Once a collective operation is started, no further CPU intervention is required in order

to progress or complete it.

L0: recv msg1 from 5;
L1: recv msg2 from 6;
L3: res = compute f(res, msg1);
L4: res = compute f(res, msg2);
L5: send res to 0;
L1 and CPU -> L3
L2 and CPU -> L4
L3 and L4 -> L5

6 2 5

1

3

0

4

recv

send

comp

recv comp

CPU

Definition. A schedule is a local dependency graph describing a partial ordered set of
operations.
Definition. A collective communication involving 𝑛 nodes can be modeled as a set of schedules 𝑆= ​𝑆↓1 , …, ​
𝑆↓𝑛  where each node 𝑖 participates in the collective executing its own schedule ​𝑆↓1 

spcl.inf.ethz.ch
@spcl_eth

6

Asynchronous	
 algorithms,	
 with	
 their	
 ability	
 to	
 tolerate	
 memory	

latency,	
 form	
 an	
 important	
 class	
 of	
 algorithms	
 for	
 modern	

computer	
 architectures.	

Edmond Chow et al., “Asynchronous Iterative Algorithm for Computing Incomplete Factorizations
on GPUs”, High Performance Computing. Springer International Publishing, 2015.

spcl.inf.ethz.ch
@spcl_eth

Theory Synchronized

7

Solo Collectives

Solo

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

§  Synchronized collectives lead to the synchronization of the
participating nodes

§  A solo collective starts its execution as soon as one node (the
initiator) starts its own schedule

Collective call Data message Activation message

spcl.inf.ethz.ch
@spcl_eth

8

Solo Collectives: Activation

P0 P1 P2 P3

§  Root-Activation: the initiator is always the root of the collective
§  Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7

spcl.inf.ethz.ch
@spcl_eth

Target Initiator

9

A Case Study: Portals 4

[2] “The Portal 4.0.2 Network Programming Interface”

Portals Table

Priority List Overflow List

ME

ME

ME Discard

ME

ME

NI MD

MD

MD

MD

Interconnection
Network

NI

§  Based on the one-sided communication model
§  Matching/Non-Matching semantics can be adopted

spcl.inf.ethz.ch
@spcl_eth

x y ct ct
x

z

y

ct ct

10

x y
x

z

y

Communication primitives
§  Put/Get operations are natively supported by Portals 4
§  One-sided + matching semantic

A Case Study: Portals 4

Atomic operations
§  Operands are the data specified by the MD at the initiator and by the ME

at the target
§  Available operators: min, max, sum, prod, swap, and, or, …

Counters
§  Associated with MDs or MEs
§  Count specific events (e.g., operation completion)

Triggered operations
§  Put/Get/Atomic associated with a counter
§  Executed when the associated counter reaches the specified threshold

spcl.inf.ethz.ch
@spcl_eth

11

Experimental results

Curie, a Tier-0 system
5,040 nodes
2 eight-core Intel Sandy Bridge processors
Full fat-tree Infiniband QDR

OMPI: Open MPI 1.8.4
OMPI/P4: Open MPI 1.8.4 + Portals 4 backend
FFLIB: proof of concept library
One process per computing node

Broadcast Allreduce

More about FFLIB at http://spcl.inf.ethz.ch/Research/
Parallel_Programming/FFlib/

spcl.inf.ethz.ch
@spcl_eth

12

Experimental results
Allgather Scatter

Curie, a Tier-0 system
5,040 nodes
2 eight-core Intel Sandy Bridge processors
Full fat-tree Infiniband QDR

OMPI: Open MPI 1.8.4
OMPI/P4: Open MPI 1.8.4 + Portals 4 backend
FFLIB: proof of concept library
One process per computing node

More about FFLIB at http://spcl.inf.ethz.ch/Research/
Parallel_Programming/FFlib/

spcl.inf.ethz.ch
@spcl_eth

§  Why? To study offloaded collectives at large scale
§  How? Extending the LogGOPSim to simulate Portals 4 functionalities

13

Simulations

[3] T. Hoefler, T. Schneider, A. Lumsdaine. “LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model”, In Proceedings of
the 19th ACM International Symposium on High Performance Distributed Computing (HPDC '10). ACM, 2010.
[4] Underwood et al., "Enabling Flexible Collective Communication Offload with Triggered Operations“, IEEE 19th Annual Symposium on
High Performance Interconnects (HOTI ‘11). IEEE, 2011.

Allreduce Broadcast

L o g G m
P4-SW 5𝜇𝑠 6𝜇𝑠 6𝜇𝑠 0.4𝑛𝑠 0.9𝑛𝑠

P4-HW 2.7𝜇𝑠 1.2𝜇𝑠 0.5𝜇𝑠 0.4𝑛𝑠
0.3𝑛𝑠
[4]

spcl.inf.ethz.ch
@spcl_eth

Co-Authors

14

Abstract Machine Model Offloading Collectives

Solo Collectives Mapping to Portals 4

Results
P. Jolivet K. D. Underwood

T. Hoefler

spcl.inf.ethz.ch
@spcl_eth

Backup slides

15

spcl.inf.ethz.ch
@spcl_eth

16

Multi-Version Scheduling

§  Enables the multiple asynchronous execution of the same
collective
§  It allows the pre-posting of k versions of the same schedule
§  Each version can have its own buffers
§  Each version can be activated by a different node

§  Implemented as FIFO queue of schedules
§  Only one scheduled enabled at each time: ​𝑆↓𝑖 
§  When ​𝑆↓𝑖  is activated, the next in the queue ​𝑆↓𝑖−1  must be enabled

Independent operations of
schedule ​𝑆↓𝑖 

Independent operations of
schedule ​𝑆↓𝑖−1 

spcl.inf.ethz.ch
@spcl_eth

17

Use Case: Multigrid

§  Multilevel preconditioners are a dominant paradigm for large-scale
partial differential equation simulations
§  Theoretically optimal
§  High communication and synchronization overheads

§  Two-grid hierarchy

§  Only one process perform the coarsening

§  Simple benchmark implementing the communication patter

§  The introduction of solo-collective led to a 1.5x improvement in the
completion time

§  A full benchmark would require a study of the convergence rate for such
fully asynchronized approach

P0::
 gather()
 coarse_work()
 scatter()

Pi, i>0::
 work()
 gather()
 scatter()

spcl.inf.ethz.ch
@spcl_eth

18

Solo Collectives

§  Collective communications lead to the pseudo-synchronization
of the participating nodes
§  Each node starts its own schedule at time ​𝑡↓𝑖 
§  The collective communication will terminate at a time ​𝑡↓𝑠 ≥ ​𝑚𝑎𝑥↓𝑖 (​𝑡↓𝑖 )

§  A solo collective starts its execution as soon as one node, the
initiator, starts its own schedule
§  The schedule of other nodes is asynchronously activated
§  The initiator starts its schedule at time ​𝑡↓𝑖𝑛𝑖𝑡 
§  The collective communication will terminate at a time ​𝑡↓𝑎 ≥ ​𝑡↓𝑖𝑛𝑖𝑡 + 𝜖
§  The term 𝜖 models the activation time: 𝜖 ≤max​(​𝜖↓𝑖 )

spcl.inf.ethz.ch
@spcl_eth

19

Solo Collectives: activation

Solo Collectives

Multi-Source Single-Source

Root-Activated Non-Root-Activated

§  One active node
§  No activation cost
§  e.g., broadcast, scatter

spcl.inf.ethz.ch
@spcl_eth

20

Experimental results

Curie, a Tier-0 system
5,040 nodes
2 eight-core Intel Sandy Bridge processors
Full fat-tree Infiniband QDR

OMPI: Open MPI 1.8.4
OMPI/P4: Open MPI 1.8.4 + Portals 4 backend
FFLIB: proof of concept library
One process per computing node

Broadcast Allreduce

spcl.inf.ethz.ch
@spcl_eth

21

Experimental results

Curie, a Tier-0 system
5,040 nodes
2 eight-core Intel Sandy Bridge processors
Full fat-tree Infiniband QDR

OMPI: Open MPI 1.8.4
OMPI/P4: Open MPI 1.8.4 + Portals 4 backend
FFLIB: proof of concept library
One process per computing node

Allgather Scatter

spcl.inf.ethz.ch
@spcl_eth

§  Why? To study offloaded collectives at large scale
§  How? Extending the LogGOPSim to simulate Portals 4 functionalities

§  FFLIB-HW uses 𝑚=0.3𝜇𝑠, discussed in [3] to model the incoming
message processing time

22

Simulations

[2] T. Hoefler, T. Schneider, A. Lumsdaine. “LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model”
[3] Underwood et al., "Enabling Flexible Collective Communication Offload with Triggered Operations"

Allreduce Broadcast

spcl.inf.ethz.ch
@spcl_eth

23

Point-to-Point Protocols

Eager protocol
•  Expected messages: priority list
•  Unexpected messages: overflow list

Rendezvous protocol
•  No shadow buffers are required
•  Synchronization happens among OEs

Receiver Receiver
Sender

ptl_md_t data;
ptl_me_t rts;
PtlMEAppend(rts, ct_rts);
PtlTriggeredGet(data, ct_rts, 1);

ptl_md_t rts;
ptl_me_t data;
PtlMEAppend(data, NONE);
PtlPut(rts);

RTS

GET

DATA GET

DATA

RTS

GET

DATA GET

DATA

spcl.inf.ethz.ch
@spcl_eth

Offloading Point-To-Point Protocols
§  P2P communications are building blocks of our abstract model

§  They can be implemented according with different protocols (i.e., eager,
rendezvous)
Can this protocols be fully offloaded to the OE (e.g., Portals 4-compliant)?

Eager Rendezvous

Expected: the message is directly
received in the user-provided buffer.

Unexpected: the message is received in a
temporary buffer. It will copied in the user-
provided one when the receive will be
posted.

Portals 4 priority and overflow list can be
used for a straightforward implementation
of this protocol.

Only the Ready-To-Send (RTS) control message
can be unexpectedly received.

spcl.inf.ethz.ch
@spcl_eth

x y ct ct
x

z

y

ct ct

25

x y
x

z

y

Communication primitives
§  Put/Get operations are natively supported by Portals 4
§  One-sided + matching semantic

A Case Study: Portals 4

Atomic operations
§  Operands are the data specified by the MD at the initiator and by the ME

at the target
§  Available operators: min, max, sum, prod, swap, and, or, …

Counters
§  Associated with MDs or MEs
§  Count specific events (e.g., operation completion)

Triggered operations
§  Put/Get/Atomic associated with a counter
§  Executed when the associated counter reaches the specified threshold

Can point-to-point
protocols be fully

offloaded?

Fully offloading:
No synchronization & No CPU intervention

Eager protocol
•  Expected messages: priority list
•  Unexpected messages: overflow list

Rendezvous protocol
•  No shadow buffers are required
•  Synchronization happens among OEs

RTS

GET

DATA

