spcl.inf.ethz.ch

Y @spcl_eth

S. DI GIROLAMO, P. JOLIVET, K. D. UNDERWOOD, T. HOEFLER

Exploiting Offload Enabled Network Interfaces

spcl.inf.ethz.ch
Y @spcl_eth

How to

program
QsNet?

How to
offload in
Portals 47

7iIce Programming

' Lossy Networks

' Ethernet : How to . Offload
I | offload in :
: i libfabric? i
@9%__ — Mellanox)
portals &j

spcl.inf.ethz.ch

ETH:urich Y @spcl_eth

Communications
(non-blocking)

Computations

Dependencies

_ ‘ 75’\ - . i‘
~
‘i:z;{f /

LO0: recv a from P1;
Ll: b = compute f(buff, a);
L2: send b to P1; OFFLOAD

L0 and CPU-> 1Ll i
L1 -> L2 | g

e

CPU Offload Engine

spcl.inf.ethz.ch

Y @spcl_eth

Performance Model

PO CPU | | | | >
OE c | Ll >
Ltime,
p1 OE [>
cpU [|] >
PO { P1{
LO: recv ml from P1l; 1L.0: recv ml from P1l;
Ll: send m2 to P1l; L1l: send m2 to P1l;
} LO -> L1
}

[1]1 A. Alexandrov et al. "LogGP: incorporating long messages into the LogP model—one step closer towards a realistic model for
parallel computation.”, Proceedings of the seventh annual ACM symposium on Parallel algorithms and architectures. ACM, 1995. 4

spcl.inf.ethz.ch

Y @spcl_eth

Offloading Collectives

A collective operation is fully offloaded if:

1. No synchronization is required in order to start the collective operation

2. Once a collective operation is started, no further CPU intervention is required in order
to progress or complete it.

’ LO: recv msgl from 5;

’ Ll: recv msg2 from 6;

L3: res = compute f(res, msgl) ;
L4: res = compute f(res, msg2) ;
L5: send res to 0;

L1 and CPU -> L3

L2 and CPU -> 14

L3 and L4 -> L5

Vv V V V

Definition. A schedule is a local dependency graph describing a partial ordered set of
operations.

Definition. A collective communication involving 72 nodes can be modeled as a set of schedules $S=.5. i1, ...,
SUn where each node 7 participates in the collective executing its own schedule SY1

spcl.inf.ethz.ch
Y @spcl_eth

" Asynchronous algorithms, with their ability to tolerate memory
latency, form an important class of algorithms for modern
computer architectures. 77

Edmond Chow et al., “Asynchronous lterative Algorithm for Computing Incomplete Factorizations
on GPUs”, High Performance Computing. Springer International Publishing, 2015.

spcl.inf.ethz.ch

Y @spcl_eth

Solo Collectives

PO P1 P2 P3 PO P1 P2 P3 PO P1 P2 P3
\\
\\
Theory Synchronized Solo
Collective call Data message @ — Activation message

= Synchronized collectives lead to the synchronization of the
participating nodes

= A solo collective starts its execution as soon as one node (the
initiator) starts its own schedule

spcl.inf.ethz.ch
Y @spcl_eth

Solo Collectives: Activation

= Root-Activation: the initiator is always the root of the collective
= Non-Root-Activation: the initiator can be any participating node

A Case Study: Portals 4

= Based on the one-sided communication model
= Matching/Non-Matching semantics can be adopted

Portals Table

N| L5 Interconnection —,/ N| >
Network

A\ 4

Discard

Initiator Target Priority List Overflow List

[2] “The Portal 4.0.2 Network Programming Interface”

oo G spcl.inf.ethz.ch
ETH:zurich s w @spcl_eth

A Case Study: Portals 4

Communication primitives
= Put/Get operations are natively supported by Portals 4
= One-sided + matching semantic

Atomic operations

= Operands are the data specified by the MD at the initiator and by the ME
at the target

= Available operators: min, max, sum, prod, swap, and, or, ...

Counters
= Associated with MDs or MEs
» Count specific events (e.g., operation completion)

Triggered operations
= Put/Get/Atomic associated with a counter

= Executed when the associated counter reaches the specified threshold

spcl.inf.ethz.ch

Y @spcl_eth

Experimental results

Broadcast Allreduce

Latency (us)
B [} o
e Q@ 29

8 16 32 64 128 256

Overhead (us)
> 3 8 &

Overhead (us)
g 8 3

Jszr;/;/:s/z:e 8 16 32 64 128 256
Number of processes Number of processes
-O- FFLIB +# OMPI/P4 -®- FFLIB +# OMPI/P4

an
Curie, a Tier-0 system - More about FFLIB atuht‘tp lIspcl. |nf ethz. chmesearchl
= - Parallel Programmlng FFI|bl “

5,040 nodes *7’ s e
2e|ght-core Intel® andy;,ﬁndg‘é’procesésors e

il Vi

FuII fat-tree Infin
,OMPI O en MPI

spcl.inf.ethz.ch

Y @spcl_eth

Experimental results

Scatter Allgather

8 16 32 64 128 256

B B

= 3.1000-

5 400/ =

8 S 7501

< 200 2 500

S $ 250

S o A —-o—0—0 | S o & —o—0—0@
8 16 32 64 128 256

8 16 32 64 128 256
Number of processes

-®- FFLIB 4 OMPI/P4

Number of processes
-®- FFLIB - OMPI/P4

-
Curie, a Tier-0 system - More about FFLIB at http://spcl. inf.ethz. chmesearchl
5,040 nodes - - s Parallel Programmlng)FFllbl &

i

2 elght-core Intel® andy;,ﬁndg‘é’procesésors
FuII fat-tree Inflﬁ’band QpR

spcl.inf.ethz.ch
Y @spcl_eth

Simulations

= Why? To study offloaded collectives at large scale
How? Extending the LogGOPSIim to simulate Portals 4 functionalities

Broadcast Allreduce
80-
. -0~ P4-SW 2004 =& P4-SW
S60. A P4-HW S .., A Pa-HW
> >
2 2
& 40- & 100-
@© (]
- |
50-
2] ‘__MH_‘
32 128 512 2048 8192 32 128 512 2048 8192
Number of processes Number of processes
L 0 g G m
P4-SW S5us 6/LS 6/LS 0.4ns 09ns
0.372s
P4-HW 2.7us 1.2us 05us 0.4ns (4]
Model”, In Proceedings of

[3] T. Hoefler, T. Schneider;
the 19th ACM International Symposmm on ngh Performance Distributed Comput/ng (HPDC "10). ACM, 2010.

[4] Underwood et al., "Enabling Flexible Collective Communication Offload with Triggered Operations®, IEEE 19th Annual Symposium on

High Performance Interconnects (HOTI “11). IEEE, 2011.

spcl.inf.ethz.ch

Y @spcl_eth

Abstract Machine Model |

ey

Communications Computations
+blocking)

t®

Offload Engine

: recv a from B2
i b = compute saouge,)7
express. end b to 71
CcPU @

(1A Mexandrov ot ol "LogGP:

Performance Model

Offloading Collectives

A collective operation is fully offloaded
1. No synchronization is required in order to start the collective operation
2. Once a collective operation is started, no further CPU intervention is required in order
to progress or complete it

P1{
recy ml from P1; L0: recv ml from P1; a
: send m2 to P1; L1: send m2 to P1;
10 -> L1

}
Definition. A
Definit be modeled 5
where each node i hedu

1695,

Solo Collectives

Solo Collectives

L mom oR2om

Theory Synchronized Solo
Collctivecall — Dalamessage — Actvation message
- i i lead to the of the

participating nodes

= Asolo collective starts its execution as soon as one node (the
initiator) starts its own schedule

Mapping to Portals 4 |

ETHzirich
Solo Collectives: Activation A Case Study: Portals 4
= Root-Activation: the initiator is always the root of the collective » Based on the one-sided communication model

= Matching/Non-Matching semantics can be adopted

Inorconnection
Notwork.

Initiator Target Priority st Overlow List

{21Tne Portal 4,02 Network Programming Intetace”

A Case Study: Portals 4

tel.

Communication primitives
* PuliGet operations are naiively supported by Portals 4
= One-sided + matching semantic

Atomic operations.

= Operands are the data specified by the MD at the initator and by the ME
tthe target

= Available operators: min, max, sum, prod, swap, and. or,

Counters
+ Associated with MDs or MEs.
+ Countspecific events (e.g. operation completion)

Triggered operations
* PulGeuAtomic associated with a counter

ETHzirich

Experimental results

Broadcast Allreduce

3 o
&
R
5. =
g =
I

¥ “ L e

Number of processes
o FFLIB A OMPIP4

Numberof processes
@ FFLIB & OMPIP4

Curle,a Tior-0 ystem
040,

pitcora i shdy Bdgn procossor

One process per computihg node

Experimental results Simulations

Scatter = Why? To study offloaded collectives at large scale

* How? Extending the LogGOPSIm to simulate Portals 4 functionalities

Broadcast Alreduce
1 FFLIB-S\ -~ FFLIB-SW
- FrUB-SW 20, o FFLIB-
o FFLIB-HW — 3 ol - FFLB-HW
— 7
@ w s wa e B s me ww
Numbar of processes Number of rocesses
Curle,a Tior system
S0t podes
2 eight.core ot Shindy Bridge processofs L o ¢ G
ot es nfriang GOR. . . : : e
owPT Opén WP 184 o o v oo
FFLBHW 27us 128 05ps. Odns 03ns [4]
InProceedngs o

1T, Hostr, T. Schneider, A Lumsdaine,
ne

10) ACM, 2010
eee

High Partmance tercamnocts (0TI 11) EEE. 2011

Co-Authors
P. Jolivet

K. D. Underwood

T. Hoefler

14

spcl.inf.ethz.ch
Y @spcl_eth

Backup slides

15

spcl.inf.ethz.ch
Y @spcl_eth

Multi-Version Scheduling

= Enables the multiple asynchronous execution of the same
collective

= |t allows the pre-posting of k versions of the same schedule
= Each version can have its own buffers
= Each version can be activated by a different node

= Implemented as FIFO queue of schedules
* Only one scheduled enabled at each time: SU/
» When $!/ is activated, the next in the queue SY/—1 must be enabled

, _ _ Independent operations of
\/ 0Pk — Op; Vopj € liy { schedule SY/—1 }
opr€l;

Independent operations of
schedule SY7

spcl.inf.ethz.ch
Y @spcl_eth

Use Case: Multigrid

= Multilevel preconditioners are a dominant paradigm for large-scale
partial differential equation simulations
» Theoretically optimal
= High communication and synchronization overheads / /

ﬂ I / :
y 7 %/ y
A y

= Two-grid hierarchy
» Only one process perform the coarsening

PO: : Pi, i>0::
gather () work ()
coarse work () gather ()
scatter () scatter ()

= Simple benchmark implementing the communication patter

= The introduction of solo-collective led to a 1.5x improvement in the
completion time

= A full benchmark would require a study of the convergence rate for such
fully asynchronized approach

spcl.inf.ethz.ch
Y @spcl_eth

Solo Collectives

= Collective communications lead to the pseudo-synchronization
of the participating nodes

= Each node starts its own schedule at time #J/
* The collective communication will terminate at a time #is > maxli (¢i7)

= A solo collective starts its execution as soon as one node, the
initiator, starts its own schedule

= The schedule of other nodes is asynchronously activated

» The initiator starts its schedule at time #linit

= The collective communication will terminate at a time tla > tlinit+ €
* The term £ models the activation time: ¢ <max(&l7)

spcl.inf.ethz.ch
: Y @spcl_eth

Solo Collectives: activation

= One active node
Solo Collectives = No activation cost
» e.g., broadcast, scatter

Multi-Source

Non-Root-Activated Root-Activated

19

spcl.inf.ethz.ch
Y @spcl_eth

Experimental results

Broadcast Allreduce
100
/\50- ~~~
(7] 2]
3 75
%)
c 50+
Q
S 25_WA
8 16 32 64 128 256 8 16 32 64 128 256
o0 40 ™
2 2 0l
5 30 = 150
S 20 S 100
£ =
g 10- g 50
O = . . I . (@) . : : !
8 16 32 64 128 256 8 16 32 64 128 256
Number of processes Number of processes
-®- FFLIB 4 OMPI 48 OMPI/P4 - FFLIB # OMPI 48 OMPI/P4

Curie, a Tier-0 system
5,040 nodes =
2 elght-core Intet Sgndy Brldge pr.ocessor’s
Full fat-tree Infiniband QDR

OMPT:'Open MPI 1.8.4;“ |

-
-

OMPI/P4: Open MPI 7
FFLIB: proof of concept I'})f
One process per computing:hode

spcl.inf.ethz.ch

Y @spcl_eth

Experimental results

Scatter Allgather

s)

u
N
o
o

Latency (
N
S

8 16 32 64 128 256
g E)
2 = 1000+
= 400 o 750
£ 200 £ 500
o O 250
o o : S o B . .
8 16 32 64 128 256 8 16 32 64 128 256
Number of processes Number of processes
-®- FFLIB & OMPI| 48 OMPI/P4 -®- FFLIB & OMPI 48 OMPI/P4

Curie, a Tier-0 system
5,040 nodes =

2 elght-core Intet Sgndy Brldge pr.ocessor’s
Full fat-tree Infiniband QDR

OMPT‘Open MPI 1.8.4
OMPI/P4: Open MPI 7
FFLIB: proof of concept I'})f

-
-

One process per computmgfnode

spcl.inf.ethz.ch
Y @spcl_eth

Simulations

= Why? To study offloaded collectives at large scale
How? Extending the LogGOPSIim to simulate Portals 4 functionalities

Broadcast Allreduce
801 == MPI =0- MPI
200-
% | = FFLIB-SW @ | A FFLIB-SW
3 60- = _
S| FFLIB-HW > 1°07 - FFLIB-HW
& 401 100-
) -/././"././. 3 50-
1 .__.___.__.——.——I—""'"_'—_.
32 128 512 2048 8192 32 128 512 2048 8192
Number of processes Number of processes
L o) g G m
OMPI 2.7ps 1.2ps 0.5pus 0.4ns

OMPI/P4 5us 6us 6us 0.4ns 0.9us

FFLIB-HW uses m=0.3 s, discussed in [3] to model the incoming
message processing time

[2] T. Hoefler, T. Schneider, A. Lumsdaine. “LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model’
[3] Underwood et al., "Enabling Flexible Collective Communication Offload with Triggered Operations”

spcl.inf.ethz.ch
Y @spcl_eth

Point-to-Point Protocols

Eager protocol
» Expected messages: priority list
« Unexpected messages: overflow list

RTs
Rendezvous protocol 4}
* No shadow buffers are required D
* Synchronization happens among OEs %‘
RTs
ptl md t rts; ‘y ptl md t data;
ptl me t data; D ptl me t rts;
Ptl1MEAppend (data, NONE) ; PtlMEAppend (rts, ct rts);
PtlPut (rts) ; %‘ PtlTriggeredGet (data, ct rts, 1);
Sender -
Receiver

spcl.inf.ethz.ch
Y @spcl_eth

Offloading Point-To-Point Protocols

= P2P communications are building blocks of our abstract model
» They can be implemented according with different protocols (i.e., eager,

rendezvous)

Can this protocols be fully offloaded to the OE (e.q., Portals 4-compliant)?

Eager

Expected: the message is directly
received in the user-provided buffer.

Unexpected: the message is received in a
temporary buffer. It will copied in the user-
provided one when the receive will be
posted.

Portals 4 priority and overflow list can be
used for a straightforward implementation
of this protocol.

Rendezvous

Only the Ready-To-Send (RTS) control message
can be unexpectedly received.

Process O
OE

CPU

Send
1: Bind MD
2: Put RTS

N

N

A

\
RTs
\
R
‘/GET
\D
ATA\b

OE

A/

] | Receive

Process 1
CPU

1: Append ME

Tri

ggered GET

spcl.inf.ethz.ch
Y @spcl_eth

A Case Study: Portals 4

Can point-to-point
w 0@ protocols be fully
‘ offloaded?

X
O J, Fully offloading:
- No synchronization & No CPU intervention

Eager protocol Rendezvous protocol

* Expected messages: priority list * No shadow buffers are required

« Unexpected messages: overflow list * Synchronization happens among OEs
W’

GEL

AD/
W’

v \ 4

