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Historic Trends in VLS| Systems
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Silicon-Photonic NoC Research
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Silicon-Photonic NoC Challenges

a Bandwidth utilization

= Current applications/architectures do not
need Tbps on-chip bandwidth

a Packaging/Integration
» |nterface electrical and photonic devices

» Coupling tens of off-chip laser sources to
photonic NoC is challenging

a Power consumption

= | arge laser power and thermal tuning power
could negate bandwidth benefits
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Outline

a Background

aLaser Power Management using NoC and
Cache Reconfiguration

a Thermal management using job allocation
aSummary
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Silicon photonic link
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Silicon photonic link
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Silicon photonic link

Modulator insertion Photodetector loss
loss
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Related Work

aLow loss photonic devices [plenty of
efforts in place]

a Channel sharing [Pan 2010] [Li 2013]

2 NoC bandwidth scaling [Zhou 201 3]
[Chen 2013] [Demir 2014]

aSharing/Placement of laser sources
[Chen 2014]

We use a combination of NoC and Cache
reconfiguration to save laser power
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Cache Reconfiguration Process
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Decision on Cache Reconfiguration

Q L2 cache replacement rate is used for making decision on
iIncreasing or decreasing L2 cache bank count

a Dual threshold approach is adopted

= We use Thign (lOog) = -3 to keep the average performance
degradation across all benchmarks less than 10%

* We use Tiow (log) = -4.5 to minimize fluctuations in L2 cache
bank count
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Reconfiguration Policy — Flow Chart

Switch to new configuration

7 and continue execution )
l Activate L2
Start cache bank(s)
‘ Wait till the current time |_ ()
_ interval is complete
Switch OFF l Continue execution with
laser source current L2 bank count till
T Get statistics from laser source stabilizes
Deactivate L2 performance counters T

cache bank(s)

T

Decrease L2
cache bank count

Switch ON laser source

]

ncrease L2 cache bank count

Decide on L2
bank count

No change in L2 cache bank count
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Target System

Q 64-core in 22 nm @ 1.25 GHz

Q 16 KB Private L1, 4 MB Shared
L2 (8 banks)

Q Crossbar NoC topology with
9512-bit channels

» [ 1-to-L2 communication uses Multiple

Write Single Read (MWSR) arbitration 64 cores with private L1 caches
Couplers driven by on-chip laser sources

8 shared L2 banks

* L2-to-L1 communication uses Single "_ " _
Write Multiple Read (SWMR) Y v
arbitration

a Evaluation

= GEMS

= McPat + Cacti + Inhouse setup
for NoC
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Evaluation — IPC, Replacement rate, Bank count
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Evaluation — IPC, Power

Q Target system: 64 cores and 8 L2 banks

= 23.8% saving in laser power on average (74.3% peak) with 0.65%
IPC degradation on average (2.6% peak)

* 9.9% reduction in system power on average (30.6% peak) with 9.2%
improvement in EDP on average (26.9% peak)
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Evaluation — Reconfiguration Overhead

a Reconfiguration involves flushing L1 and L2
back to memory or fetching memory blocks to

activated L2 banks

» Upto 18,000 cycles required for reconfiguration

= 150 ud energy overhead for DRAM accesses
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Summary |

1 We proposed to manage the laser power by
reconfiguring the NoC bandwidth based on
the temporal and spatial variations in the
cache size required by applications

1 We adopted dual threshold approach to
determine the L2 bank count at runtime

1 On a 64-core target system, our proposed
technique reduces laser power and system
power by 23.8% and 9.9%, respectively, and
improves EDP by 9.2% on average
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Outline

a Background

aLaser Power Management using NoC and
Cache Reconfiguration

a Thermal management using job allocation
aSummary

BOSTON _
2 Joshi



Silicon photonic link - DWDM

’ \ Ring Filter ...

with A2 Resonance

Laser
Source

Ring Modulator Ring Modulator

. Resonance Ring Filter
with A1 Resonance with A2 with A1 Resonance Y

\ AN

a Dense WDM (as much as 64 A/wg, 10 Gbps/A)
improves bandwidth density

a Thermal management becomes very challenging

* Thermal tuning could cost more than 10 W of power
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Related Work

a Thermal control through novel ring filters/modulators
designs

» Cladding [Djordjevic, Optical Exp.” 2013]
= Heaters [Zhou, TACO’2010; Li, TVLSI'2012]
» Mach-Zehnder interferometers [Biswajeet, Optical
Exp.’2010]
Q Techniques for thermal management in manycore
systems
= DVFS [Quan, DAC’2001]
= Workload migration [Zhou, TACO’2010]
» Liquid cooling [Coskun, VLSI-SoC'2009]

We use workload allocation technique to minimize the
thermal gradients among photonic devices
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Target Manycore System Architecture

* 256-core system with Clos network

Core Architecture: 1A-32 core in Intel SCC [Howard, ISSCC2011],

Memory

Average power consumption: 1.166W

Controllers *

Processor Tile
with 4 Cores

L2 [ L2
C+L1|C+L1

L2 | L2
C+L1|C+L1

BOSTON
UNIVERSITY

F
F

{ H;_#—)
N
|

#
i
:

25

>

|

|

16KB I/D L1 cache & 256KB L2 cache; JF™

N 16 wgs with

16 rings/wg

16 wgs

Joshi



Target Manycore System Architecture

* 256-core system with Clos network
8-ary 3-stage Clos
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Ring-Aware Thermal Management

0 Core power impacts on ® Rings EIRDO cores HRDI1 cores

ring temperature RD?2 cores £ Threads
a Goals: | |
= Minimize the difference ° o -
among ring temperatures s s
= Reduce the overall chip .
temperature o rymay
Q Approach: N
= Classify the cores based ¢ 2= = r————
on their distances to a ring ssec Lo

group

» Determine the impact of
each region on ring
temperature

» Allocate threads so as to
minimize thermal gradients
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Ring-Aware Thermal Management

* Ring-aware workload allocation

Categorize cores based on their
relative positions to the rings

# of threads <= the # of non-
RDO and non-center cores?

Keep same # of
threads in each

center cores .
Center core . RDO cores RDO region

Avoid RDO and

* Multi-program support

— Sort the applications and threads based on their power dissipation
& allocate high-power application first
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Experimental Methodology

a Simulation Platform Single application Multi-program

= Performance: Sniper simulator + workload workload
SPLASH-2 & PARSEC

= Power: McPAT 0.8 + Temperature
dependent leakage power model

* Thermal: HotSpot 5.02
Q Simulated Systems:

= 256-core system with silicon-
photonic Clos NoC

= Tech. Node: 22nm; Area: 340 mm? — Allocation Policies:
» Single-application and multi-program * Clustered
workloads » Chessboard
= Utilization scenarios: 32, 64, 96, 128, . Piney.
156, 180, 206, 230 and 256 threads Ring-Aware
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Evaluation of Single-Application Workloads
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Performance Results
Ring Temp. Gradient: >8.8°C <=8.8°C <=44°C <=2.2°C
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When using more than 50% of the cores, several applications have

significantly better performance with the Ring-Aware approach



Evaluation of Multi-Program Workloads

a Mapping Policies: In-order left (Inorder), random (Rand),
Proposed

L] Low-pow app L] High-pow app

System Utlllzatlon 50% | |
- Low-— —power apphcatlon percentage B 25% [0]50% [ |75%;

Chess_Inorder MinTemp_Inorder Ring_Inorder Ring_Proposed
Chess_Rand MinTemp_Rand Ring_Rand
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Evaluation of Multi-Program Workloads

a Diverse multi-program workloads

L: low-power M: medium-power H: high-power
LL water_nsquare (L), lu_contiguous (L) HH barnes (H), fft (H)
LH barnes (H), lu_contiguous (L) LM canneal (M), ocean (L)
MM radix (M), blackscholes (M) MH radix (M), swaptions (H)
o _ System Utilization: 25% System Utilization: 50%
"(:-'; O 6! 1 6! -Chess Inorder|: Ring_ Proposed-
s
Q = gyl Al 7
e L | I aad |
s TIL TN EubELL
o LlL. LM LH MM MH HH ... LM LH MM MH HH

Chess_Inorder results in 6.1%, 13.8% and 8% lower performance
compared to Ring Proposed for LH, MH and HH, respectively.
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Summary |l

12 We used a cross-layer approach for
thermal analysis & design of silicon
photonic NoC

1 We proposed a Ring-Aware job allocation
policy to reduce thermal gradients among
photonic devices

QOur policy enables us to operate the
photonic links at their maximum
bandwidth and in turn maximize
application performance
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Summary

a Numerous challenges need to be
overcome to make photonic NoC viable
= Bandwidth utilization
» Packaging/Integration

= Power consumption

—NoC and Cache reconfiguration can be used to
lower laser power

— Software-based workload allocation policy can be
used to reduce thermal tuning power
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