ALGORITHMS IN LOGIC

HTTP://ALGO-LOGIC.COM

Implementing Ultra Low Latency Data Center Services with Programmable Logic

John W. Lockwood, CEO: Algo-Logic Systems, Inc.

http://Algo-Logic.com • Solutions@Algo-Logic.com • (408) 707-3740 • 2255-D Martin Ave., Santa Clara, CA 95050

Why the Move to Programmable Logic?

"There are large challenges in scaling the performance of software now. The question is: 'What's next?' We took a bet on programmable hardware."

- Doug Burger, Microsoft
- Driving Metrics in the Data Center
 - Latency:
 - Reduce delay
 - Avoid jitter
 - Throughput
 - Processing packets at line rate
 - Handle 10G, 25G, 40G, and 100G
 - Power:
 - Driving cost of OpEx

- Field Programmable Gate Array (FPGA) logic moves into the CPU
- Microsoft accelerates BING search with FPGA
- Intel acquires Altera

Servers Accelerated with FPGA Gateware

• FPGA Augments Existing Servers

- Can run on an expansion card (same size as a GPU)
- Or may be integrated into the CPU socket

GDN Applications run on FPGA

- Implements low-latency, low-power, high-throughput data processing

Example of Low Latency Service: Key/Value Store

• Key/Value Store (KVS)

- Simplifies implementation of large-scale distributed computation algorithms
- Data Center Servers exchanges data over standard Ethernet

Challenges

- Operating System delays packets and limits throughput
- Per-core processing inefficient at high-speed packet processing

Solutions

- Bypass kernel bypass with DPDK
- Offload of packet processing with FPGA

Mobile Application Servers Need Fast Key/Value Stores

Scalable backend services to share data

- Sensors { location, bio, movement, .. }
- Social { status, dating, updates, multi-player games .. }
- Media { video/security, audio/music, .. }
- Communication { network status, handoff, short messages .. }
- Database { users, providers, payments, travel, authentication, ... }

Must be able to scale

- as the number of users grows
- <u>Scale up</u> to provide the best latency, throughput, and power
- <u>Scale out</u> to increase storage capacity, throughput, and redundancy
- Example:
 - Mobile location sharing

Case Study: Implementing Uber with KVS

• Uber in 2014

- 162,037 drivers in the US completed 4 or more trips
- New drivers doubled every 6 months for past 2 years
- Number of Uber Users = 8M
- Number of Cities = 290
- Total trips = 140M
- Daily Trips = 1M

Analysis and Assumptions

- Assuming 25% of the drivers are active
- 25% of 160k drivers = 40k active cars (<48k)
- Drivers update position once per second = 40k IOW

• Implementation

- Uber with on an Algo-Logic KVS card

FIL GID-III FILE 6

Washington Post, Dec. 2014

Algo-Logic's KVS solution for Mobile Applications

Algo-Logic's KVS solution for Mobile Applications

And SCALE-OUT quickly to increase storage capacity and throughput

Provisioning and Measurements with GDN-Switch

Linux Software Socket KVS

Algo-Logic KVS with DPDK: Bypass the Kernel

Algo-Logic GDN-Search: KVS in FPGA

Algo-Logic gateware on Nallatech P385 with Altera Stratix V A7 FPGA

Trends for Adding Storage around FPGAs

Six banks of memory controllers

- QDR SRAM
- RLDRAM
- DDR3, DDR4

64 lanes of SERDES

- SATA disk and Flash
- Serial memories
 - Hybrid Memory Cube (HMC)
 - Mosys Bandwidth Engine (BE2, BE3)

New Memories

- 3D Xpoint with DDR4 Interface
- Potential for Terabytes of Memory on each card

Implementation of KVS with Socket I/O, DPDK, and FPGA

Benchmark same application

- Key/Value Store (KVS)
- Running on the same PC
 - Intel i7-4770k CPU, 82598 NIC, and Altera Stratix V A7 FPGA
- With three different implementations

- Socket I/O, DPDK, FPGA **DPDK** Dequeue Receive Queue Enqueue Message Process Intel 82598 OCSM 10g Ethernet Message Note: Message read once into CPU Cache DPDK OCSM Buffer Packet Supported Packet NIC Response Generation LEGEND Dequeu Control Handof Enqueue Transmit Data Transfer Queue Algo-Logic software on Intel 82598 10GE NIC and Core i7-4770k CPU

KVS Hardware in Data Center Rack

Load Testing off the KVS Implementations

Percent Processed vs. Message Transmission Rate

Sockets Power Consumption Profile (10M Packets with 40 CSM Messages/Packet)

Voltage: 26V Marginal Energy Consumption: 3.53 µJoul/CSM Total Energy Consumption: 11.07 µJoul/CSM

DPDK Power Consumption Profile (10M Packets with 40 CSM Messages/Packet)

Latency Measurement with GDN-Classify

- Round trip latency of GDN Switch is deterministic (constant)
- Round trip latency of KVS Sever = Total Round trip Time Round trip time with 10G loopback on GDN Switch

KVS Latency in FPGA, DPDK, and Sockets

Measured Latency, Throughput, and Power Results

Latency (µseconds)	Tested Throughput (CSMs/sec)	Power (µJoules/CSM)
41.54	4.0	11
6.434	16	6.6
0.467	15	0.52
Latency (µseconds)	Maximum Throughput (CSMs/sec)	Power (µJoules/CSM)
88x less	13x	21x less
14x less	3.2x	13x less
	Latency (µseconds) 41.54 6.434 0.467 Latency (µseconds) 88x less 14x less	Latency (µseconds)Tested Throughput (CSMs/sec)41.544.06.434160.46715Latency (µseconds)Maximum Throughput (CSMs/sec)88x less13x14x less3.2x

Conclusions: Programmable Hardware in the Data Center

Lowers Latency

- -88x faster than Linux networking sockets
- —14x faster than optimized DPDK (kernel bypass)
- Increases Throughput (IOPs)
 - -3x to 13x improvement in throughput
 - -Lowers Capital Expenditures (CapEx)
- Reduces Power
 - -13x to 21x reduction in power
 - Reduces Operating Expenditures (OpEx)

