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Current Trends in HPC 

• Supercomputing systems scaling rapidly 

– Multi-core architectures and 

– High-performance interconnects 

• InfiniBand is a popular HPC interconnect 

– 257 systems (51.4%) in Jun’15 Top500 

• Message Passing Interface (MPI) used by vast 

majority of HPC applications 

• MPI collective operations very popular due to 

ease of use and performance portability 
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Energy Aware Collective Design 

• Non-energy aware approaches to 

collective design are prevalent 

• Current Non-RDMA based Energy-

Aware approaches sub-optimal  

– Reduced performance 

– Room to obtain more energy savings 

• Most (if not all) of the existing “white-

box” approaches to fine-grained 

energy savings are dependent of 

throttling of CPUs using DVFS 

– Needs super user privileges 

– Not practical on shared HPC systems 

HotI'15 3 

Performance 

E
n

e
rg

y
 

Current Non-

Energy Aware 

Approaches 

Current Non-

RDMA  

Energy Aware 

Approaches 



RDMA-Aware Design of Blocking Collectives 

• Several attempts to create RDMA-Aware 

designs for blocking collectives 
– Gupta et al., Sur et al 

• Different methods available for progress 

– Basic RDMA schemes 

• Uses basic RDMA operations  

– RDMA_Write / RDMA_Read 

– Dedicated hardware progress engines 

• e.g.: CORE-Direct from Mellanox 

• Venkata et al., Kandalla et al. 
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Can Modern Transport Protocols Help? 
• IB offers several communication protocols with different performance 

and memory characteristics 
– Reliable Connection (RC) 

– eXtended Reliable Connection (XRC) 

– Unreliable Datagram (UD) 

– Dynamic Connected (DC) 

 

 

 

 

• No work explores how to design efficient blocking collective operations 

using RDMA primitives on top of different transport protocols for 
– Reducing energy consumption and 

– Achieving good communication latency 

 HotI'15 5 

Metric RC XRC UD DC 

Network Scalability Fair Good Very Good Very Good 

Memory Scalability Fair Good Very Good Very Good 

RDMA Support Yes Yes No Yes 
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Problem Statement 

• Can RDMA primitives in conjunction with modern 

transport protocols be used to design efficient 

collective operations with the following 

characteristics 

– Good communication latency 

– Good network scalability 

– Limited network congestion and 

– Good energy footprint 
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Contributions 

• Investigate transport protocol and energy-aware designs 

for blocking All-to-all collectives for IB networks 

• Identify the correct set of transport protocols and 

algorithms that lead to best energy savings for different 

All-to-all communication patterns 

• Perform a careful analysis of the benefits of our 

approaches with  
– OSU microbenchmarks 

– NAS parallel benchmarks and 

– P3DFFT application kernel 
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Design of RDMA-Aware All-to-all 
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Process #1 / Node #1 Process #2 / Node #2 

Process #3 / Node #3 Process #4 / Node #4 

• Receive send/receive buffer information from application 

• Allocate temporary buffers to 

– Receive completion notification from remote processes and  (size = 1 byte per process in job) 

– Store IB registration and address information from all processes 
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Register Receive / Completion Buffers 
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Process #1 / Node #1 Process #2 / Node #2 

Process #3 / Node #3 Process #4 / Node #4 

• Register Send / Receive / Completion buffer with IB HCA 

• Store IB registration info and address for Receive / Completion buffers 
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Exchange memory / rkey Information 
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Process #1 / Node #1 Process #2 / Node #2 

Process #3 / Node #3 Process #4 / Node #4 

• Perform MPI_Allgather (24 bytes) and collect 
– IB registration information and 

– Receive / completion  buffer address from all processes 
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Exchange Data / Notify Completion 
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Process #1 / Node #1 Process #2 / Node #2 

Process #3 / Node #3 Process #4 / Node #4 

• Initiate RDMA_Write operations to remote processes using information collected in Allgather 

– Place data and 

– Notify completion 
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Other Design Considerations 

• Caching Mechanism to Avoid MPI_Allgather 

– Cache <target memory address, rkey> from all processes 

– Compare <memory address, rkey> of current invocation with cached value 

– Perform MPI_Allreduce with MPI_LAND on result of comparison 

– MPI_Allreduce significantly less expensive and scalable 

• RDMA_Write vs RDMA_Read 

– Throughput of RDMA_Write higher than RDMA_Read 

• Possibly due to limitation on the number of back-to-back RDMA_Read operations that 

can be posted to IB HCA 

• Temporary Memory Overhead 

– Memory overhead negligible 

• Consume about 3.0 MB of memory per process for an All-to-all of any message size 

involving 131,072 (128 K) processes 
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Design Goals & Challenges 

• Design Goals 

– Good communication latency 

– Good network scalability 

– Limited network congestion 

– Good energy footprint 

• Design Challenges 

– Can we accurately identify the time processor 

needs to be in low energy state? 

– How can processor be forced into a low energy 

state for a specified duration? 

– Can intelligent use of modern transport 

protocols aid the design of efficient energy 

aware All-to-all collective algorithms? 
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Estimating Communication Time 

• Heuristics 

– Use one-way latency and number of transfers expected with All-to-all 

– Maintain internal communication latency tables 
• Tables maintained for a range of message sizes for different systems 

• Log(GP) model[1] 

•  Application can tell the MPI library through MPIT 

– Requires application changes 

• Profile the time taken for the All-to-all operation 

– Done on a per communicator basis 

– Found to be more accurate 
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Moving Processor to Low Power State 
• Use RAPL interface 

– Requires elevated (super-user / root) privileges 

– Not  practical on shared HPC systems 

• Rely on the Linux kernel 
– Kernel smart enough to move the processors to a low energy state if cores are idle 

– Ensure that the MPI process is idle 

– Multiple options 

• Enter interrupt based progress mode 

– Allows for progress of other communication 

– Cannot support multi-channel (shared memory / IB) communication 

• Call “usleep” for estimated communication time 

– Supports multi-channel (shared memory / IB) communication 

– Cannot  progress other communication 

» All-to-all is very communication intensive 

» May be better to avoid other communication during this time 
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Behavior of RC & DC with Low 

Communication Load 

• RC delivers excellent performance 

• Inherent serialization in DC results in slightly reduced performance 

HotI'15 19 

Reliable Connected Dynamic Connected 



Behavior of RC & DC with Medium 

Communication Load 

• Multiple concurrent operations in RC results in slightly reduced performance 
– QP cache trashing 

– Performance still equivalent to DC 

• Inherent serialization in DC results in good network behavior 
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Behavior of RC & DC with High 

Communication Load 

• Multiple concurrent operations in RC significantly reduced performance 
– QP cache trashing 

• Inherent serialization in DC results in good network behavior 
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Intelligent Protocol Selection 

• RC Protocol 

– Best performance at low to medium network load 

– Performance degrades as network load increases 

– Choose for applications / communication patterns with low to 

medium network load 

• DC Protocol 

– Inherent serialization in DC causes 

• Performance overhead at low to medium network load 

• Good network behavior at high network load 

– Choose for applications / communication patterns with high 

network load 
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Experimental Setup 
• 32 Node Intel Ivybridge cluster 

• Each node equipped with 

– Intel Ivybridge dual ten-core sockets 

– 2.80 GHz with 32GB RAM 

– MT4113 FDR ConnectIB HCAs (56 Gbps data rate) 

– PCI-Ex Gen3 interfaces. 

– RHEL release 6.2, with kernel version 2.6.32-220.el6 

– Mellanox OpenFabrics version 2.4-1.0.4 

• Evaluations done with 

– OSU Microbenchmarks v5.0 

– NAS Parallel Benchmarks v3.3 

– P3DFFT Kernel with 

• “-DUSE EVEN” build option; use MPI_Alltoall instead of MPI_Alltoallv 

• Weak scaling experiments; problem size increases with job size 

• Problem size configured to take 75% - 80% of total system memory 

. 
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MVAPICH2 Software 
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• High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP, and RoCE 

– MVAPICH (MPI-1) , Available since 2002 

– MVAPICH2 (MPI-2.2, MPI-3.0 and MPI-3.1), Available since 2004 

– MVAPICH2-X (Advanced MPI + PGAS), Available since 2012 

– Support for GPGPUs  (MVAPICH2-GDR), Available since 2014 

– Support for MIC (MVAPICH2-MIC), Available since 2014 

– Support for Virtualization (MVAPICH2-Virt), Available since 2015 

– Used by more than 2,450 organizations in 76 countries 

– More than 281,000 downloads from the OSU site directly 

– Empowering many TOP500 clusters (Jun‘15 ranking) 

•  8th ranked 519,640-core cluster (Stampede) at  TACC 

• 11th ranked 185,344-core cluster (Pleiades) at NASA 

• 22nd ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others 

– Available with software stacks of many IB, HSE, and server vendors including Linux Distros (RedHat and SuSE) 

– http://mvapich.cse.ohio-state.edu 

• Empowering Top500 systems for over a decade 

– System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) -> 

– Stampede at TACC (8th in Jun’15, 462,462 cores, 5.168 Plops) 

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/


Designs Used for Performance Evaluation 
• All-to-all Algorithm 

– Default 

• Default implementation of blocking All-to-all collective (uses pair-wise algorithm) 

– R-Aware 

• The RDMA-Aware scheme proposed in [1] adapted for blocking collectives 

– R-P-Aware 

• The RDMA-Aware scheme with designs to move processor to lower energy state 

• IB Transport Protocol 

– RC 

• The standard RC transport protocol of IB 

– DC 

• The DC transport protocol of IB with the DCPool design described in [2] 

• Uses a pool of DC QPs for communication 

– DC-E-UD  

• The DC transport protocol of IB with the DC-E-UD described in [2] 

• Uses only one DC QP for communication 
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• R-P-Aware + DC-E-UD 

– Significant energy savings 

• Able to save 1.7x (44%) energy 

– Improves communication performance 

• 10% improvement in execution time 

– Significant reduction in network congestion 

• 16.3 times reduction in congestion 

• Default + DC-E-UD 

– Best for reducing congestion 

– Incurs slight performance penalty 
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Conclusions 
• Studied the impact of RDMA and transport protocol aware 

designs on the energy and performance of dense 

collective operations like All-to-all 

• Proposed transport protocol / energy-aware designs for 

blocking All-to-all 

• Demonstrated drawbacks in using single transport 

protocol for different applications / communication 

patterns 

• Identify the correct set of transport protocols and 

algorithms that lead to energy savings for different All-to-

all communication patterns 

• Proposed approach improves energy efficiency by 

– 1.7 times for large message MPI_Alltoall at  640 processes 

– 1.7 times for Class C NAS FT benchmark at 512 processes 

– 10% for P3DFFT kernel at 640 processes 
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Future Work 
• Study the impact transport protocol and energy aware designs can have 

on other collective communication patterns like All-to-one and One-to-all  

 

• Evaluate advanced All-to-all algorithm designs to avoid network 

congestion with RC protocol 

 

• Evaluate the impact of proposed algorithms on other RDMA-enabled 

networks like RoCE 

 

• Distribute RDMA / energy aware designs with future releases of 

MVAPICH2 
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