

Amon: Advanced Mesh-Like Optical NoC

Sebastian Werner,

Javier Navaridas and Mikel Luján Advanced Processor Technologies Group School of Computer Science The University of Manchester

Bottleneck: On-chip Interconnects in Many-core Systems

Metal Wires

- Increasing Signal Delay with technology scaling while gate delays decrease
- Increasing Power Consumption in global core-tocore interconnects due to repeaters, regenerators, or buffers

Bottleneck: On-chip Interconnects in Many-core Systems

Metal Wires

- Increasing Signal Delay with technology scaling while gate delays decrease
- Increasing Power Consumption in global core-tocore interconnects due to repeaters, regenerators, or buffers
- -> Performance and Power demands cannot be met by metal wires in future many-core chips¹

¹O'Connor, Ian, and Gabriela Nicolescu. Integrated Optical Interconnect Architectures for Embedded Systems. Springer Science & Business Media, 2012.

Motivation for Optical Networks-on-chip

- 1.Optical data transmission by using light -> low latency (signal propagation 15ps/mm) (global metal wire: ~262ps/mm)
- 2.Data can be transmitted simultaneously on the same waveguide at different wavelengths -> high bandwidth without adding wires
- 3.(Almost) Distance independent energy consumption

Motivation for Optical Networks-on-chip

- 1.Optical data transmission by using light -> low latency (signal propagation 15ps/mm) (global metal wire: ~262ps/mm)
- 2.Data can be transmitted simultaneously on the same waveguide at different wavelengths -> high bandwidth without adding wires
- 3.(Almost) Distance independent energy consumption

Huge Potential, **BUT:** Nanophotonic components may have high power demands

-> Novel network architectures required to enable efficient, low-power operation

Wavelength: λ

Ring Filters for Switching (1)

The University of Mancheste

Ring Filters for Switching (1)

Ring Filters for Switching (1)

The Universit of Mancheste

Ring Filters for Switching (2)

Number of λ = Number Ring Filters

ONoC Design Properties

- Network design using microring resonators is based on deterministic routing
- Hardwired, pre-defined paths between each source-destination pair

Switching equals routing algorithm

-> ONoC design comprises Topology, Routing algorithm and Switch architecture

Contention in Optical NoCs

Detector responding ...to λ6

The University of Mancheste

The University of Mancheste

Objectives of low-power ONoC Design

Low Laser Power

- Min. path loss -> short paths ->Low diameter
- Small $\#\lambda$ for addressing ->fewer laser sources

Objectives of low-power ONoC Design

Low Laser Power

- Min. path loss -> short paths ->Low diameter
- Small $\#\lambda$ for addressing ->fewer laser sources

Low Ring Heater Power

- Small #Microrings (20µW/Ring)
- Small $#\lambda$ -> Fewer Ring Filters for Switching

State-of-the-art solutions are 1. Optical Spidergon¹ 2. QuT²

- Aim low-power
- Microring resonators
- Ring-based topology

¹ S. Koohi and S. Hessabi, "Scalable architecture for a contention-free optical network on-chip,"

Journal of Parallel and Distributed Computing, vol. 72, no. 11, pp. 1493–1506, 2012.

² P. K. Hamedani, N. E. Jerger, and S. Hessabi, "Qut: A low-power optical network-on-chip," in NOCS, 2014. IEEE, 2014, pp. 80–87.

Optical Spidergon

N/2 λs in Network for addressing -> Reduces Laser Power

The Univ of Manc

Optical Spidergon

N/2 λs in Network for addressing -> Reduces Laser Power

Optical Spidergon

N/2 λs in Network for addressing

-> Reduces Laser Power

Different paths to prevent overwriting data !

Optical Spidergon

1 Switch Design

(N/2 -1) Ring Filters for Switching at each node

N/4 λ s in Network for addressing

2 Switch Designs (Odd/ Even)

- Even Switches cheap
- Odd Switches still as expensive as in Spidergon (Ring-based Topology have similar switching demands)

Spidergon/QuT

+ N/2 and N/4 number of wavelengths in network, providing different paths to avoid contention

- Long paths in ring topologies
- Large number of ring filters for switching required

Proposal: Mesh-based Topology

Advantages over ring-topologies in oNoCs:

- Shorter paths/diameter than ringbased networks
- In XY Routing: At most √N-1 Ring Filters in each switch (every other node in column)

Proposal: Mesh-based Topology

Advantages over ring-topologies in oNoCs:

- Shorter paths/diameter than ringbased networks
- In XY Routing: At most √N-1 Ring Filters in each switch (every other node in column)

Problem:

- N number of λs in Mesh:
- -> Larger Laser Power than N/4 (QuT)

Proposal: Mesh-based Topology

Advantages over ring-topologies in oNoCs:

- Shorter paths/diameter than ringbased networks
- In XY Routing: At most √N-1 Ring Filters in each switch (every other node in column)

Problem:

- N number of λs in Mesh:
- -> Larger Laser Power than N/4 (QuT)

Solution: Split Mesh in 4 parts

The University of Manchester

Other Switches are designed accordingly

36 Node Amon

48 Node Amon

Scaling Symmetrical to X/Y Axis

Diameter

Diameter

Much smaller diameter with better scalability -> shorter paths -> less laser power

Design Configuration

- Aim: Low-power design, parameters are accordingly:
- **22nm** low-voltage technology library
- Core data rate: 4Ghz
- Modulator/Detector: 8Gb/s
- Flit Size: 16bit
- Standard Laser type: Laser is always on
- Tile-width: 1mm
- Injection rate 0.5
- Data is modulated on 8 wavelengths per sender
- Control network: Multi-Write-Single-Read Bus
- Implementation with DSENT¹ network modeling tool
- 64-, 144- and 256-Node networks to assess scalability

¹C. Sun et al., "Dsent - a tool connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling," in NOCS, 2012. IEEE, 2012, pp. 201–210.

Number of Microrings

Microrings: Modulators, Detectors, Filters

Number of Microrings

Microrings: Modulators, Detectors, Filters

Number of Microrings

Microrings: Modulators, Detectors, Filters

Up to 54% savings in microrings !

Microring Area Waveguide Area

Microring Area 📃 Waveguide Area

Amon

Spidergon QuT

64 Nodes

Summary

Amon is a novel mesh-based optical NoC comprising topology, switch architecture and routing algorithm

Summary

Amon is a novel mesh-based optical NoC comprising topology, switch architecture and routing algorithm

Compared to ring-based Spidergon and QuT, Amon saves:

- Laser Power:
 - Short paths -> lower path losses
 - N/4 Wavelengths in Network
- Ring Heater Power:
 - Fewer Ring filters for switching -> less ring tuning required
- Total Power Savings up to 78% / 71%
- Area due to fewer microrings (up to 31% / 18%)
- Mesh Structure suitable for tile-based VLSI implementation

Thank you! Questions?

Zero Load Latency

Control Network:

- Packet Size 2bit for packet type (req/ack/nack)
- 4Ghz Core clk and 8Gb/s Modulator: 2 bits per clock clk
- Total latency: Modulation (1 cycle) + On-the-fly (1 cycle) + Detection (1 cycle)
 = 3 cycles
- Destination checking: 6 cycles (req + ack)

Zero Load Latency

Control Network:

- Packet Size 2bit for packet type (req/ack/nack)
- 4Ghz Core clk and 8Gb/s Modulator: 2 bits per clock clk
- Total latency: Modulation (1 cycle) + On-the-fly (1 cycle) + Detection (1 cycle)
 = 3 cycles
- Destination checking: 6 cycles (req + ack)

Data Network:

- Assuming 128bit data packet
- Data transmission with 8 modulators: 128 / 8 / 2 = 8 cycles for modulation, 1 on-the-fly, 8 for detection -> 17 cycles
- Total: 23 Cycles

Zero Load Latency

Control Network:

- Packet Size 2bit for packet type (req/ack/nack)
- 4Ghz Core clk and 8Gb/s Modulator: 2 bits per clock clk
- Total latency: Modulation (1 cycle) + On-the-fly (1 cycle) + Detection (1 cycle)
 = 3 cycles
- Destination checking: 6 cycles (req + ack)

Data Network:

- Assuming 128bit data packet
- Data transmission with 8 modulators: 128 / 8 / 2 = 8 cycles for modulation, 1 on-the-fly, 8 for detection -> 17 cycles
- Total: 23 Cycles
- with 200ps clock cycle and 15ps/mm propagation delay, every destination within 18 hops is reached in one clock cycle
 -> Larger network size has insignificant impact on latency
- Adding modulators or using faster ones (up to 40Gb have been fabricated) further decreases latency

Insertion Loss Parameters

Parameter	Value	
Laser efficiency	5 dB	
Coupler loss	1 dB	
Waveguide propagation loss	100 dB/m	
Ring: Through loss	$0.01~\mathrm{dB}$	
Ring: Drop loss	1 dB	
Modulator Insertion Loss	1 dB	
Modulator Extinction	1 dB	
Photodetector loss	1 dB	

Control Network MWSR

Power:

21%, 19%, and 17% of Amon (64, 144, 256 Nodes) Only 1 Modulator compared to 8 leads to small ring heater power and area

Waveguide Area becomes significant as one waveguide reaching to every other node in the oNoC is added for each node

Control Network

Control Network

• Req - Ack/NegAck messages for destination reservation

Control Network

- Req Ack/NegAck messages for destination reservation
- Commonly implemented as a Multiple-Write-Single-Read bus

Technology Parameters Area

Waveguide->Pitch	= 4e-6	# m
Ring->Area	= 100e-12	# m2
Photodetector->Area	= 10e-12	# m2

Amon total power :

64 Nodes: 0.83W 144 Nodes: 4W 256 Nodes: 15W

Area Results

Microring Area Waveguide Area

Area Results

Microring Area Waveguide Area

The Universit of Manchest

36

The Universition of Manchest

Area Results

📕 Microring Area 🛛 📕 Waveguide Area

VLSI Layout: Shared Laser Sources

The Universi of Manchest

VLSI Layout: Shared Laser Sources

Amon: Evaluation & Comparison

Microring area (m²)

#Nodes	Spidergon	QuT	Amon	CN
64	4.4e-06	3.7e-06	2.7e-06	7.0e-07
144	1.44e-05	1.2e-05	9.2e-06	2.3e-06
256	3.48e-05	2.9e-05	2.3e-05	5.0e-06

Waveguide area (m²)

#Nodes	Spidergon	QuT	Amon	CN
64	1.68e-06	1.4e-06	1.5e-06	3.1e-06
144	3.84e-06	3.2e-06	3.6e-06	9.1e-06
256	6.7 e-06	5.5e-06	6.6e-06	4.3e-05

Total area normalized to Amon

#Nodes	Amon	QuT	Spidergon	CN
64	1	1.21	1.44	0.88
144	1	1.19	1.42	0.94
256	1	1.16	1.40	1.61

For comparison:

eNoC 64-node Mesh: Area: 1.77e-06 (~ 40% of Amon)

4 injection channels for destinations in < N/4 (left/right) > N/4 (left/right) hop distance

N/4 wavelengths in network -> less switching rings -> Same #modulators at each node

But:

Ring topology causes long paths leading to high IL