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Introduction 
•  HPC applications can now scale beyond 400,000 cores (TACC 

Stampede) 

•  Message Passing Interface (MPI) has been the de-facto 
programming model for parallel applications 

•  MPI defines collective operations to implement group 
communication operations 

•  Parallel applications commonly rely on collective operations 
owing to their ease-of-use and performance portability 

•  Critical to design collective operations to improve performance 
and scalability of HPC applications 
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Drivers of Modern HPC Cluster Architectures 

•  Multi-core processors are ubiquitous 
•  InfiniBand very popular in HPC clusters  
•  Accelerators/Coprocessors becoming common in high-end 

systems 
•  Emerging HPC hardware is leading to a generation of 

heterogeneous systems 
•  Necessary to optimize MPI communication libraries on emerging 

heterogeneous systems 

	  

	  

Accelerators / Coprocessors  
high compute density, high performance/watt 

>1 TFlop DP on a chip  

High Performance Interconnects - 
InfiniBand 

<1usec latency, >100Gbps Bandwidth   
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Multi-core  
Processors 



Intel Many Integrated Core (MIC) Architecture 

•  X86 compatibility – reuse the strong Xeon software eco-system  

•  Programming models, libraries, tools and applications  

•  Xeon Phi, first product line based on MIC 

•  Already powering several Top500 systems  

•  Tianhe-2@NUDT/China (1), Stampede@TACC (6), 
Conte@Purdue(28), Discover@NASA(65) 
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MPI Applications on MIC Clusters 

Xeon Xeon Phi 

Multi-core Centric 

Many-core Centric 

MPI 
Program 

MPI 
Program 

Offloaded 
Computation 

MPI 
Program MPI Program 

MPI Program 

Host-only 

Offload  
(/reverse Offload) 

Symmetric 

Coprocessor-only 

•  Flexibility in launching MPI jobs on clusters with Xeon Phi  
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•  	  MPI(+X)	  con0nues	  to	  be	  the	  predominant	  programming	  model	  in	  HPC	  	  	  

•  High	  Performance	  open-‐source	  MPI	  Library	  for	  InfiniBand,	  10Gig/iWARP,	  and	  RDMA	  
over	  Converged	  Enhanced	  Ethernet	  (RoCE)	  

–  MVAPICH	  (MPI-‐1)	  ,MVAPICH2	  (MPI-‐2.2	  and	  MPI-‐3.0),	  Available	  since	  2002	  

–  MVAPICH2-‐X	  (MPI	  +	  PGAS),	  Available	  since	  2012	  

–  Used	  by	  more	  than	  	  2,055	  organiza0ons	  	  (HPC	  Centers,	  Industry	  and	  Universi0es)	  in	  70	  
countries	  

–  More	  than	  181,000	  downloads	  from	  OSU	  site	  directly	  

–  Empowering	  many	  TOP500	  clusters	  
•  	  6th	  ranked	  462,462-‐core	  cluster	  (Stampede)	  at	  	  TACC	  

•  19th	  ranked	  125,980-‐core	  cluster	  (Pleiades)	  at	  NASA	  
•  21st	  ranked	  73,278-‐core	  cluster	  (Tsubame	  2.0)	  at	  Tokyo	  Ins0tute	  of	  Technology	  and	  many	  others	  

–  Available	  with	  sobware	  stacks	  of	  many	  IB,	  HSE,	  and	  server	  vendors	  including	  

Linux	  Distros	  (RedHat	  and	  SuSE)	  

–  hdp://mvapich.cse.ohio-‐state.edu	  

•  Partner	  in	  the	  U.S.	  NSF-‐TACC	  Stampede	  System	  

MVAPICH2/MVAPICH2-X Software 
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Motivation 

•  MIC architectures are leading to heterogeneous systems 

•  MIC coprocessors have slower clock rates, smaller physical 
memory 

•  Heterogeneous MIC clusters introduce many new 
communication planes, with varying performance trade-offs 

•  Critical to design communication libraries to carefully optimize 
communication primitives on heterogeneous systems 
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Data Movement on Intel Xeon Phi Clusters 

CPU	   CPU	  
QPI	  

M
IC
	  

CPU	  

M
IC
	  

IB	  

Node	  0	   Node	  1	   1.	  Intra-Socket 
2.	  Inter-Socket 
3.	  Inter-Node 
4.	  Intra-MIC 
5. Inter-Node MIC-MIC 
6.	  Inter-Node	  MIC-‐Host	  

MPI	  Process	  
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and	  more	  .	  .	  .	  

•  Critical for runtimes to optimize data movement, hiding the complexity 

•  Connected as PCIe devices – Flexibility, however adds complexity 



Host CPU 
(Intel Sandy-Bridge) 

Intel Xeon 
Phi  (MIC) 

IB-MIC 
5280 MB/s MIC-IB 

962.86 MB/s 

Host-IB 
6296 MB/s Host-MIC 

6977 MB/s 

Communication Paths and Peak 
Bandwidths (MB/s) 

Critical to avoid 
communication 
paths involving IB 
HCA reading data 
from MIC 
Memory 



Step3: Inter-Node (Host-Host/MIC-MIC Communication) 
MIC-MIC Communication very slow!  

Basic Recursive-Doubling (Allreduce) 
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Node2 

     MIC0 

     IB HCA 

Node0 

     MIC0 

     IB HCA Node1 

     MIC0 

     IB HCA 

Node3 

     MIC0 

     IB HCA   IB  Switch 

•  Suppose N nodes,  two leaders per node,  
    log(2*N) Inter-node steps  

•  log(2*N) steps involve  IB HCA reading 
data from MIC memory 

•  Communication overheads  will also affect 
host-level transfers   

•  Very high communication costs!  

Step1: Intra-Host/Intra-MIC Reduction Step2: Intra-Node (Host-MIC Communication) Step4: Intra-Node/Intra-MIC Broadcast  



Basic Knomial Tree (Bcast) 

13	  

Node2 

     MIC0 

     IB HCA 

Node0 

     MIC0 

     IB HCA Node1 

     MIC0 

     IB HCA 

Node3 

     MIC0 

     IB HCA   IB  Switch 

Step1: Intra-Host (MIC-Host Communication), 
Intra-Host, Intra-MIC Broadcast 

Step2: Inter-MIC Communication  
 (Inter-Node , MIC-MIC Communication very slow!) 

Step3: Intra-Node (Host-MIC Communication) 
Intra-Node, Intra-MIC Broadcast 

•  Suppose root of the MPI_Bcast is a MIC process.  
If Step1 involves several send-operations, all send 
steps require HCA reading from MIC 

•  All subsequent transactions that involve a co-root 
on the MIC will experience similar bottlenecks 

•  Overheads will also propagate to host-level 
transfers 

•  High communication overheads!  

 



Problem Statement 
•  Can we design a generic framework to optimize collective 

operations on emerging heterogeneous clusters?  

•  How can we improve the performance of common collectives, 

such as, MPI_Bcast, MPI_Reduce and MPI_Allreduce on MIC 

clusters?  

•  What are the challenges in improving the performance of 

intra-MIC phases of collective operations?  

•  MIC is a highly threaded environment, can we utilize OpenMP 

threads to accelerate collectives such as MPI_Reduce and 

MPI_Allreduce?  14 
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Design Objectives 

•  Primary objectives of the proposed framework:  

    -  Minimize involvement of MIC cores while progressing collectives 

    -  Eliminate utilization of high overhead communication paths 

    -  Improve the performance of intra-MIC phases of collectives 

•  Proposed approach:  

    Split heterogeneous communicator into two new sub-groups.  

    -  Host-Comm (HC): comprising of host processes 

    -  MIC-Leader-Comm (MLC): includes only MIC leader  

 processes 
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Proposed Hierarchical Communicator  Sub-System
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Node2 

     MIC0 

     IB HCA 

Node0 

     MIC0 

     IB HCA Node1 

     MIC0 

     IB HCA 

Node3 

     MIC0 

     IB HCA   IB  Switch 

Host-Comm (HC), not including any MIC processes  (Homogeneous) 
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Inter-node communication done through Homogeneous Host-Comm (HC)  

Proposed Knomial Tree (Bcast) 
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Node2 

     MIC0 

     IB HCA 

Node0 

     MIC0 

     IB HCA Node1 

     MIC0 

     IB HCA 

Node3 

     MIC0 

     IB HCA   IB  Switch 

•  Proposed design completely eliminates 
communication paths requiring IB HCA reading 
data from MIC memory 

•  Requires only one hop over the PCI channel 
between each Host-Leader and corresponding 
MIC-leader  

•  Offloads all inter-node phases of the collective 
operation onto more powerful host processors 

Step1: Intra-Node (Host-MIC Communication) 
Intra-Host/MIC Broadcast Step2: Inter-Node (Host-Host Communication) 

Step3: Intra-Node (Host-MIC Communication) 
Intra-Host/MIC Broadcast 
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Inter-node MPI_Reduce, 
MPI_Allreduce  Design Alternatives (Basic) 
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Node2 

     MIC0 

     IB HCA 

Node0 

     MIC0 

     IB HCA Node1 

     MIC0 

     IB HCA 

Node3 

     MIC0 

     IB HCA   IB  Switch 

Inter-node communication done through Homogeneous Host-Comm (HC)  

Consider Allreduce with N nodes:   
 
-  Eliminates instances of IB HCA reading from 

MIC memory  
-  Each MIC leader performs  maximum of two 

transactions over the PCI 
-  Critical communication steps performed by 

the host 

-  First set of intra-MIC  Allreduce  is still 
performed by the slower MIC cores 

-  The inter-Host phase cannot begin until the 
MIC leader is done with Intra-MIC reduce 

 
 

Step1: Intra-Host/Intra-MIC Reduction Step2: Intra-Node Reduction (Host-MIC Communication) Step3: Inter-Node Reduction (Host-Host) Step4: Intra-Host/Intra-MIC Broadcast 
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Node2
 

     MIC0 

     IB HCA 

Node0 

     MIC0 

     IB HCA Node1 

     MIC0 

     IB HCA 

Node3 

     MIC0 

     IB HCA   IB  Switch 

 
Inter-node MPI_Reduce, 

MPI_Allreduce  Design Alternatives (Direct) 
 

Inter-node communication done through Homogeneous Host-Comm (HC)  

Consider Allreduce with N nodes: 
 
-  Eliminates instances of IB HCA reading from 

MIC memory  
-  Critical communication steps performed by 

the host 
-  Intra-MIC computation is also offloaded to 

the host 

-  Large number of transfers between MIC 
processes and the Host-Leader on each node 

-  Heavier load on the Host-Leader processes 
 

Step1.a: Intra-Host Reduction, Host-Leader-MIC communication Step1.b: Intra-Host Reduction Step2   : Inter-Host Reduction Step3   : Intra-Host/Intra-MIC Broadcast 
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Node2 

     MIC0 

     IB HCA 

Node0 

     MIC0 

     IB HCA Node1 

     MIC0 

     IB HCA 

Node3 

     MIC0 

     IB HCA   IB  Switch 

 
Inter-node MPI_Reduce, 

MPI_Allreduce  Design Alternatives (Peer) 

Inter-node communication done through Homogeneous Host-Comm (HC)  

Consider Allreduce with N nodes: 
 
-  Eliminates instances of IB HCA reading from 

MIC memory  
-  Each MIC process  performs  maximum of two 

transactions over the PCI 
-  Critical communication steps performed by the 

host 
-  Intra-MIC computation is also offloaded to the 

host 
-  Load on Host processes is balanced 

-  Large number of transfers between MIC 
processes and the corresponding Host Processes     Step1.a: Host-MIC Communication Step1.b: Intra-Host Reduction  Step2: Inter-Host Reduction  Step3: Intra-Host/Intra-MIC Broadcast 
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Compute/MIC Node  

 
 
 
 
 
 

 
 
 

Main Memory 

 
 
 
 
 

   Shared-Memory Buffer for Collectives 

Data Slab 0 

  C0   C1   C2               Control-Array0                      CN       

Data Slab 1 
Data Slab M 

  C0  C1    C2               Control-Array1                      CN      
C0     C1    C2             Control-ArrayM                       CN       

Intra-node MPI_Reduce  
(Basic Slab-Design)  

L2 
Cache 

Core0 Core1 Core2 Core
N 

L2 
Cache 

L2 
Cache 

L2 
Cache 

Data Cntrl-Info 

Consider Allreduce with N processes in a node: 
 
-  Data Slab0 and Control-Array0 used for Comm0 

-  Processes use contiguous memory locations in 
Data Slab0 to read/write data. Better  spatial  
Locality 

 
-  Control-Array0 used for updating control-

information and synchronization. Same cache 
line shared between N processes.  

    Can lead to cache thrashing 



 
Intra-node MPI_Reduce (Slot-Based Design) 

 

 
 
 
 
 
 
 
 

 
Main Memory 

 
 
 
 

 Shared-Memory Buffer for Collectives 

 
Data Core0 

 
Data Core0 

C0  
Data Core0 

 
Data Core1 

 
Data Core1 

C1  
Data Core1 

 
Data CoreN 
CN  

Data CoreN 
 

Data CoreN 
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Compute/MIC Node  

L2 
Cache 

Core0 Core1 Core2 Core
N 

L2 
Cache 

L2 
Cache 

L2 
Cache 

C0 

C1 

CN 

C0 

C1 

CN 

Data Cntrl-Info 

Consider Allreduce with N processes in a node: 
 
-  Slots in the first column used for first allreduce 
     on a given comm 
 
-  Processes use different memory locations in the 

column to update control-information and to 
synchronize. Reduces cache thrashing 

 
-  Data locations are no longer contiguous memory 

locations. Lack of spatial data locality 
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Compute/MIC Node  

 
 
 
 
 
 

 
 
 

Main Memory 

 
 
 
 
 

   Shared-Memory Buffer for Collectives 

Data Slab 0 

C0x0   C1x0   C2x0                  Control-Array0           CNx0       

Data Slab 1 
Data Slab M 

C0x1   C1x1   C2x1                 Control-Array0            CNx1 

Intra-node MPI_Reduce  
(Staggered-Cntrl-Array)  

L2 
Cache 

Core0 Core1 Core2 Core
N 

L2 
Cache 

L2 
Cache 

L2 
Cache 

Data Cntrl-Info 

Padding 
Padding 

Padding C0xN   C1xN  C2xN                  Control-Array0          CNxN       

Consider Allreduce with N processes in a node: 
 
 
-  Hybrid Solution 
-  Maintains spatial locality for data 
-  Control information arrays are padded to fit 

cache line size 
-  Ensures control information updates will not 

experience cache thrashing 



Intra-Node/Intra-MIC  
Related Design Considerations 
(MPI_Reduce/MPI_Allreduce) 

•  Issue: 
Designs relying on node leader (lowest rank on a node/mic) to  perform 
the reductions via shared-memory can lead to load imbalance and skewed 
execution 

•  Proposed Solution: 
Construct tree-based designs for shared-memory based reductions to 
balance the compute load across all cores 
Trees with configurable degrees to customize across   architectures 

•  Use OpenMP threads on MIC to accelerate compute 
operations of intra-node Reduce/Allreduce operations 
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Experimental Setup 

•  TACC Stampede Cluster 
•  Up to 64 nodes with Sandy Bridge-EP (Xeon 

E5-2680) processors and Xeon Phi Coprocessors 
(Knight’s Corner) used 

•  Host has 32 GB memory and MIC has 8GB 
•  Mellanox FDR switches (SX6036) to interconnect 
•  OSU Micro-benchmark suite (OMB) 
•  Optimizations added to MVAPICH2-1.9 (MV2-MIC) 

–  Version already has intra-node SCIF based optimizations 
•  IMPI 4.1.1.026 



 
MPI_Bcast Latency Comparison 

 

31 

Proposed Bcast designs outperform default MPI_Bcast 
in MVAPICH2 by up to 72% 

 4,864 MPI Processes, 64 nodes 
(16H-60M) (*) 

 576 MPI Processes, 32 nodes  
(2H-16M) 

44% 
72% 

*We were unable to scale Intel-MPI for up to 64 nodes 



 
Inter-node MPI_Bcast  

Max Latency Comparison  
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 1,204 MPI Processes, 32 nodes (16H-16M) 

Proposed Bcast designs outperform default MPI_Bcast 
in MVAPICH2 by up to 48% 

48% 



 
Intra-node MPI_Reduce Latency Comparison 
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Staggered-Cntrl-Array with Tree-Degree 2 
outperforms default by up to 45% 

45% 

16 MPI Processes in a MIC coprocessor 



 
Intra-MIC MPI_Reduce Latency Comparison 
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             Staggered-Cntrl-Array with 4 OpenMP threads 
outperforms default by up to 17%, for very large messages  

  17% 

16 MPI Processes in a MIC coprocessor 



 
Inter-node MPI_Allreduce Latency Comparison 
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1,024 MPI Processes, 32 Nodes (16H-16M) 

Proposed schemes are 58% better than default MVAPICH2.  

58% 



 
Inter-node MPI_Allreduce 
 Max Latency  Comparison 
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 2,048 MPI Processes, 64 nodes (16H-16M) (*) 

Proposed Allreduce designs outperform default 
MPI_Allreduce in MVAPICH2 by up to 52.6% 

52.6% 

        *We were unable to scale Intel-MPI for up to 64 nodes    



 
Windjammer Application Performance Comparison 
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Windjammer Application performance with 128 Processes 
Proposed designs improve the performance of Windjammer 
application, by up to 16% which heavily uses broadcast 

16% 
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Conclusions and Future Work 
•  Proposed a generic framework to design collectives in a 

hierarchical manner on emerging MIC clusters 
•  Explored various design alternatives to improve intra-

MIC and inter-MIC phases of collectives, such as, 
MPI_Reduce and MPI_Allreduce 

•  Proposed designs improve performance of MPI_Bcast, 
by up to 72%, and MPI_Allreduce, by up to 58% 

•  Also improves Windjammer application execution time by 
up to 16% 

                                     Future work 
•  Extend designs to improve performance of other 

important collectives for emerging MIC clusters 

�
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Thank you! 
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http://mvapich.cse.ohio-state.edu 
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