
Designing Optimized MPI Broadcast and
Allreduce for Many Integrated Core

(MIC) InfiniBand Clusters

K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri,
D. Bureddy and D. K. Panda

Presented by Dr. Xiaoyi Lu

Computer Science & Engineering Department,
The Ohio State University

Outline

•  Introduction

•  Motivation and Problem Statement

•  Designing Optimized Collectives for MIC Clusters:

 - MPI_Bcast

 - MPI_Reduce, MPI_Allreduce

•  Experimental Evaluation

•  Conclusions and Future work

�

2

Introduction
•  HPC applications can now scale beyond 400,000 cores (TACC

Stampede)

•  Message Passing Interface (MPI) has been the de-facto
programming model for parallel applications

•  MPI defines collective operations to implement group
communication operations

•  Parallel applications commonly rely on collective operations
owing to their ease-of-use and performance portability

•  Critical to design collective operations to improve performance
and scalability of HPC applications

	

3	

Drivers of Modern HPC Cluster Architectures

•  Multi-core processors are ubiquitous
•  InfiniBand very popular in HPC clusters
•  Accelerators/Coprocessors becoming common in high-end

systems
•  Emerging HPC hardware is leading to a generation of

heterogeneous systems
•  Necessary to optimize MPI communication libraries on emerging

heterogeneous systems

	

	

Accelerators / Coprocessors
high compute density, high performance/watt

>1 TFlop DP on a chip

High Performance Interconnects -
InfiniBand

<1usec latency, >100Gbps Bandwidth

4	

Multi-core
Processors

Intel Many Integrated Core (MIC) Architecture

•  X86 compatibility – reuse the strong Xeon software eco-system

•  Programming models, libraries, tools and applications

•  Xeon Phi, first product line based on MIC

•  Already powering several Top500 systems

•  Tianhe-2@NUDT/China (1), Stampede@TACC (6),
Conte@Purdue(28), Discover@NASA(65)

5	

MPI Applications on MIC Clusters

Xeon Xeon Phi

Multi-core Centric

Many-core Centric

MPI
Program

MPI
Program

Offloaded
Computation

MPI
Program MPI Program

MPI Program

Host-only

Offload
(/reverse Offload)

Symmetric

Coprocessor-only

•  Flexibility in launching MPI jobs on clusters with Xeon Phi

6	

•  	 MPI(+X)	 con0nues	 to	 be	 the	 predominant	 programming	 model	 in	 HPC	 	 	

•  High	 Performance	 open-‐source	 MPI	 Library	 for	 InfiniBand,	 10Gig/iWARP,	 and	 RDMA	
over	 Converged	 Enhanced	 Ethernet	 (RoCE)	

–  MVAPICH	 (MPI-‐1)	 ,MVAPICH2	 (MPI-‐2.2	 and	 MPI-‐3.0),	 Available	 since	 2002	

–  MVAPICH2-‐X	 (MPI	 +	 PGAS),	 Available	 since	 2012	

–  Used	 by	 more	 than	 	 2,055	 organiza0ons	 	 (HPC	 Centers,	 Industry	 and	 Universi0es)	 in	 70	
countries	

–  More	 than	 181,000	 downloads	 from	 OSU	 site	 directly	

–  Empowering	 many	 TOP500	 clusters	
•  	 6th	 ranked	 462,462-‐core	 cluster	 (Stampede)	 at	 	 TACC	

•  19th	 ranked	 125,980-‐core	 cluster	 (Pleiades)	 at	 NASA	
•  21st	 ranked	 73,278-‐core	 cluster	 (Tsubame	 2.0)	 at	 Tokyo	 Ins0tute	 of	 Technology	 and	 many	 others	

–  Available	 with	 sobware	 stacks	 of	 many	 IB,	 HSE,	 and	 server	 vendors	 including	

Linux	 Distros	 (RedHat	 and	 SuSE)	

–  hdp://mvapich.cse.ohio-‐state.edu	

•  Partner	 in	 the	 U.S.	 NSF-‐TACC	 Stampede	 System	

MVAPICH2/MVAPICH2-X Software

7	

Outline

•  Introduction

•  Motivation and Problem Statement

•  Designing Optimized Collectives for MIC Clusters:

 - MPI_Bcast

 - MPI_Reduce, MPI_Allreduce

•  Experimental Evaluation

•  Conclusions and Future work

�

8

Motivation

•  MIC architectures are leading to heterogeneous systems

•  MIC coprocessors have slower clock rates, smaller physical
memory

•  Heterogeneous MIC clusters introduce many new
communication planes, with varying performance trade-offs

•  Critical to design communication libraries to carefully optimize
communication primitives on heterogeneous systems

	

	
9	

Data Movement on Intel Xeon Phi Clusters

CPU	 CPU	
QPI	

M
IC
	

CPU	

M
IC
	

IB	

Node	 0	 Node	 1	 1.	 Intra-Socket
2.	 Inter-Socket
3.	 Inter-Node
4.	 Intra-MIC
5. Inter-Node MIC-MIC
6.	 Inter-Node	 MIC-‐Host	

MPI	 Process	

10	

	

and	 more	 .	 .	 .	

•  Critical for runtimes to optimize data movement, hiding the complexity

•  Connected as PCIe devices – Flexibility, however adds complexity

Host CPU
(Intel Sandy-Bridge)

Intel Xeon
Phi (MIC)

IB-MIC
5280 MB/s MIC-IB

962.86 MB/s

Host-IB
6296 MB/s Host-MIC

6977 MB/s

Communication Paths and Peak
Bandwidths (MB/s)

Critical to avoid
communication
paths involving IB
HCA reading data
from MIC
Memory

Step3: Inter-Node (Host-Host/MIC-MIC Communication)
MIC-MIC Communication very slow!

Basic Recursive-Doubling (Allreduce)

12	

Node2

 MIC0

 IB HCA

Node0

 MIC0

 IB HCA Node1

 MIC0

 IB HCA

Node3

 MIC0

 IB HCA IB Switch

•  Suppose N nodes, two leaders per node,
 log(2*N) Inter-node steps

•  log(2*N) steps involve IB HCA reading
data from MIC memory

•  Communication overheads will also affect
host-level transfers

•  Very high communication costs!

Step1: Intra-Host/Intra-MIC Reduction Step2: Intra-Node (Host-MIC Communication) Step4: Intra-Node/Intra-MIC Broadcast

Basic Knomial Tree (Bcast)

13	

Node2

 MIC0

 IB HCA

Node0

 MIC0

 IB HCA Node1

 MIC0

 IB HCA

Node3

 MIC0

 IB HCA IB Switch

Step1: Intra-Host (MIC-Host Communication),
Intra-Host, Intra-MIC Broadcast

Step2: Inter-MIC Communication
 (Inter-Node , MIC-MIC Communication very slow!)

Step3: Intra-Node (Host-MIC Communication)
Intra-Node, Intra-MIC Broadcast

•  Suppose root of the MPI_Bcast is a MIC process.
If Step1 involves several send-operations, all send
steps require HCA reading from MIC

•  All subsequent transactions that involve a co-root
on the MIC will experience similar bottlenecks

•  Overheads will also propagate to host-level
transfers

•  High communication overheads!

Problem Statement
•  Can we design a generic framework to optimize collective

operations on emerging heterogeneous clusters?

•  How can we improve the performance of common collectives,

such as, MPI_Bcast, MPI_Reduce and MPI_Allreduce on MIC

clusters?

•  What are the challenges in improving the performance of

intra-MIC phases of collective operations?

•  MIC is a highly threaded environment, can we utilize OpenMP

threads to accelerate collectives such as MPI_Reduce and

MPI_Allreduce? 14

Outline

•  Introduction

•  Motivation and Problem Statement

•  Designing Optimized Collectives for MIC Clusters:

 - MPI_Bcast

 - MPI_Reduce, MPI_Allreduce

•  Experimental Evaluation

•  Conclusions and Future work

�

15

Design Objectives

•  Primary objectives of the proposed framework:

 - Minimize involvement of MIC cores while progressing collectives

 - Eliminate utilization of high overhead communication paths

 - Improve the performance of intra-MIC phases of collectives

•  Proposed approach:

 Split heterogeneous communicator into two new sub-groups.

 - Host-Comm (HC): comprising of host processes

 - MIC-Leader-Comm (MLC): includes only MIC leader

 processes

16

Proposed Hierarchical Communicator Sub-System

17	

Node2

 MIC0

 IB HCA

Node0

 MIC0

 IB HCA Node1

 MIC0

 IB HCA

Node3

 MIC0

 IB HCA IB Switch

Host-Comm (HC), not including any MIC processes (Homogeneous)

Outline

•  Introduction

•  Motivation and Problem Statement

•  Designing Optimized Collectives for MIC Clusters:

 - MPI_Bcast

 - MPI_Reduce, MPI_Allreduce

•  Experimental Evaluation

•  Conclusions and Future work

�

18

Inter-node communication done through Homogeneous Host-Comm (HC)

Proposed Knomial Tree (Bcast)

19	

Node2

 MIC0

 IB HCA

Node0

 MIC0

 IB HCA Node1

 MIC0

 IB HCA

Node3

 MIC0

 IB HCA IB Switch

•  Proposed design completely eliminates
communication paths requiring IB HCA reading
data from MIC memory

•  Requires only one hop over the PCI channel
between each Host-Leader and corresponding
MIC-leader

•  Offloads all inter-node phases of the collective
operation onto more powerful host processors

Step1: Intra-Node (Host-MIC Communication)
Intra-Host/MIC Broadcast Step2: Inter-Node (Host-Host Communication)

Step3: Intra-Node (Host-MIC Communication)
Intra-Host/MIC Broadcast

Outline

•  Introduction

•  Motivation and Problem Statement

•  Designing Optimized Collectives for MIC Clusters:

 - MPI_Bcast

 - MPI_Reduce, MPI_Allreduce

Ø  Inter-node Design Alternatives

Ø  Intra-node, Intra-MIC Design Alternatives

•  Experimental Evaluation

•  Conclusions and Future work

�

20

Inter-node MPI_Reduce,
MPI_Allreduce Design Alternatives (Basic)

21	

Node2

 MIC0

 IB HCA

Node0

 MIC0

 IB HCA Node1

 MIC0

 IB HCA

Node3

 MIC0

 IB HCA IB Switch

Inter-node communication done through Homogeneous Host-Comm (HC)

Consider Allreduce with N nodes:

-  Eliminates instances of IB HCA reading from

MIC memory
-  Each MIC leader performs maximum of two

transactions over the PCI
-  Critical communication steps performed by

the host

-  First set of intra-MIC Allreduce is still
performed by the slower MIC cores

-  The inter-Host phase cannot begin until the
MIC leader is done with Intra-MIC reduce

Step1: Intra-Host/Intra-MIC Reduction Step2: Intra-Node Reduction (Host-MIC Communication) Step3: Inter-Node Reduction (Host-Host) Step4: Intra-Host/Intra-MIC Broadcast

22	

Node2

 MIC0

 IB HCA

Node0

 MIC0

 IB HCA Node1

 MIC0

 IB HCA

Node3

 MIC0

 IB HCA IB Switch

Inter-node MPI_Reduce,

MPI_Allreduce Design Alternatives (Direct)

Inter-node communication done through Homogeneous Host-Comm (HC)

Consider Allreduce with N nodes:

-  Eliminates instances of IB HCA reading from

MIC memory
-  Critical communication steps performed by

the host
-  Intra-MIC computation is also offloaded to

the host

-  Large number of transfers between MIC
processes and the Host-Leader on each node

-  Heavier load on the Host-Leader processes

Step1.a: Intra-Host Reduction, Host-Leader-MIC communication Step1.b: Intra-Host Reduction Step2 : Inter-Host Reduction Step3 : Intra-Host/Intra-MIC Broadcast

23	

Node2

 MIC0

 IB HCA

Node0

 MIC0

 IB HCA Node1

 MIC0

 IB HCA

Node3

 MIC0

 IB HCA IB Switch

Inter-node MPI_Reduce,

MPI_Allreduce Design Alternatives (Peer)

Inter-node communication done through Homogeneous Host-Comm (HC)

Consider Allreduce with N nodes:

-  Eliminates instances of IB HCA reading from

MIC memory
-  Each MIC process performs maximum of two

transactions over the PCI
-  Critical communication steps performed by the

host
-  Intra-MIC computation is also offloaded to the

host
-  Load on Host processes is balanced

-  Large number of transfers between MIC
processes and the corresponding Host Processes Step1.a: Host-MIC Communication Step1.b: Intra-Host Reduction Step2: Inter-Host Reduction Step3: Intra-Host/Intra-MIC Broadcast

Outline

•  Introduction

•  Motivation and Problem Statement

•  Designing Optimized Collectives for MIC Clusters:

 - MPI_Bcast

 - MPI_Reduce, MPI_Allreduce

Ø  Inter-node Design Alternatives

Ø  Intra-node, Intra-MIC Design Alternatives

•  Experimental Evaluation

•  Conclusions and Future work

�

24

25

Compute/MIC Node

Main Memory

 Shared-Memory Buffer for Collectives

Data Slab 0

 C0 C1 C2 Control-Array0 CN

Data Slab 1
Data Slab M

 C0 C1 C2 Control-Array1 CN
C0 C1 C2 Control-ArrayM CN

Intra-node MPI_Reduce
(Basic Slab-Design)

L2
Cache

Core0 Core1 Core2 Core
N

L2
Cache

L2
Cache

L2
Cache

Data Cntrl-Info

Consider Allreduce with N processes in a node:

-  Data Slab0 and Control-Array0 used for Comm0

-  Processes use contiguous memory locations in
Data Slab0 to read/write data. Better spatial
Locality

-  Control-Array0 used for updating control-

information and synchronization. Same cache
line shared between N processes.

 Can lead to cache thrashing

Intra-node MPI_Reduce (Slot-Based Design)

Main Memory

 Shared-Memory Buffer for Collectives

Data Core0

Data Core0

C0
Data Core0

Data Core1

Data Core1

C1
Data Core1

Data CoreN
CN

Data CoreN

Data CoreN

26

Compute/MIC Node

L2
Cache

Core0 Core1 Core2 Core
N

L2
Cache

L2
Cache

L2
Cache

C0

C1

CN

C0

C1

CN

Data Cntrl-Info

Consider Allreduce with N processes in a node:

-  Slots in the first column used for first allreduce
 on a given comm

-  Processes use different memory locations in the

column to update control-information and to
synchronize. Reduces cache thrashing

-  Data locations are no longer contiguous memory

locations. Lack of spatial data locality

27

Compute/MIC Node

Main Memory

 Shared-Memory Buffer for Collectives

Data Slab 0

C0x0 C1x0 C2x0 Control-Array0 CNx0

Data Slab 1
Data Slab M

C0x1 C1x1 C2x1 Control-Array0 CNx1

Intra-node MPI_Reduce
(Staggered-Cntrl-Array)

L2
Cache

Core0 Core1 Core2 Core
N

L2
Cache

L2
Cache

L2
Cache

Data Cntrl-Info

Padding
Padding

Padding C0xN C1xN C2xN Control-Array0 CNxN

Consider Allreduce with N processes in a node:

-  Hybrid Solution
-  Maintains spatial locality for data
-  Control information arrays are padded to fit

cache line size
-  Ensures control information updates will not

experience cache thrashing

Intra-Node/Intra-MIC
Related Design Considerations
(MPI_Reduce/MPI_Allreduce)

•  Issue:
Designs relying on node leader (lowest rank on a node/mic) to perform
the reductions via shared-memory can lead to load imbalance and skewed
execution

•  Proposed Solution:
Construct tree-based designs for shared-memory based reductions to
balance the compute load across all cores
Trees with configurable degrees to customize across architectures

•  Use OpenMP threads on MIC to accelerate compute
operations of intra-node Reduce/Allreduce operations

28

Outline
•  Introduction

•  Motivation and Problem Statement

•  Designing Optimized Collectives for MIC Clusters:

 - MPI_Bcast

 - MPI_Reduce, MPI_Allreduce

 Inter-node Design Alternatives

 Intra-node, Intra-MIC Design Alternatives

•  Experimental Evaluation

•  Conclusions and Future work

�

29

30	

Experimental Setup

•  TACC Stampede Cluster
•  Up to 64 nodes with Sandy Bridge-EP (Xeon

E5-2680) processors and Xeon Phi Coprocessors
(Knight’s Corner) used

•  Host has 32 GB memory and MIC has 8GB
•  Mellanox FDR switches (SX6036) to interconnect
•  OSU Micro-benchmark suite (OMB)
•  Optimizations added to MVAPICH2-1.9 (MV2-MIC)

–  Version already has intra-node SCIF based optimizations
•  IMPI 4.1.1.026

MPI_Bcast Latency Comparison

31

Proposed Bcast designs outperform default MPI_Bcast
in MVAPICH2 by up to 72%

 4,864 MPI Processes, 64 nodes
(16H-60M) (*)

 576 MPI Processes, 32 nodes
(2H-16M)

44%
72%

*We were unable to scale Intel-MPI for up to 64 nodes

Inter-node MPI_Bcast

Max Latency Comparison

32

 1,204 MPI Processes, 32 nodes (16H-16M)

Proposed Bcast designs outperform default MPI_Bcast
in MVAPICH2 by up to 48%

48%

Intra-node MPI_Reduce Latency Comparison

33
Staggered-Cntrl-Array with Tree-Degree 2
outperforms default by up to 45%

45%

16 MPI Processes in a MIC coprocessor

Intra-MIC MPI_Reduce Latency Comparison

34

 Staggered-Cntrl-Array with 4 OpenMP threads
outperforms default by up to 17%, for very large messages

 17%

16 MPI Processes in a MIC coprocessor

Inter-node MPI_Allreduce Latency Comparison

35

1,024 MPI Processes, 32 Nodes (16H-16M)

Proposed schemes are 58% better than default MVAPICH2.

58%

Inter-node MPI_Allreduce
 Max Latency Comparison

36

 2,048 MPI Processes, 64 nodes (16H-16M) (*)

Proposed Allreduce designs outperform default
MPI_Allreduce in MVAPICH2 by up to 52.6%

52.6%

 *We were unable to scale Intel-MPI for up to 64 nodes

Windjammer Application Performance Comparison

37

Windjammer Application performance with 128 Processes
Proposed designs improve the performance of Windjammer
application, by up to 16% which heavily uses broadcast

16%

12%

0

100

200

300

400

500

4 Nodes (16H-16M) 8 Nodes (8H-8M)

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

wnj-def
wnj-new

Conclusions and Future Work
•  Proposed a generic framework to design collectives in a

hierarchical manner on emerging MIC clusters
•  Explored various design alternatives to improve intra-

MIC and inter-MIC phases of collectives, such as,
MPI_Reduce and MPI_Allreduce

•  Proposed designs improve performance of MPI_Bcast,
by up to 72%, and MPI_Allreduce, by up to 58%

•  Also improves Windjammer application execution time by
up to 16%

 Future work
•  Extend designs to improve performance of other

important collectives for emerging MIC clusters

�

38

Thank you!

39

http://mvapich.cse.ohio-state.edu

{kandalla, akshay, hamidouc, potluri, bureddy, panda}
@cse.ohio-state.edu

Network-Based Computing Laboratory, Ohio State University

